![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Plants are sessile and prone to multiple stresses in the changing environmental conditions. Of the several strategies adopted by plants to counteract the adverse effects of abiotic stress, phytohormones provide signals to allow plants to survive under stress conditions. They are one of the key systems integrating metabolic and developmental events in the whole plant and the response of plants to external factors and are essential for many processes throughout the life of a plant and influence the yield and quality of crops. The book 'Phytohormones and Abiotic Stress Tolerance in Plants' summarizes the current body of knowledge on crosstalk between plant stresses under the influence of phytohormones, and provides state-of-the-art knowledge of recent developments in understanding the role of phytohormones and abiotic stress tolerance in plants. This book presents information on how modulation in phytohormone levels affect regulation of biochemical and molecular mechanisms.
Rice is the staple food for half of the world s population. Consumption of rice is the major exposure route globally to the class one, non-threshold carcinogen inorganic arsenic. This book explains the sources of arsenic to paddy soils and the biogeochemical processes and plant physiological attributes of paddy soil-rice ecosystems that lead to high concentrations of arsenic in rice grain. It presents the global pattern of arsenic concentration and speciation in rice, discusses human exposures to inorganic arsenic from rice and the resulting health risks. It also highlights particular populations that have the highest rice consumptions, which include Southern and South East Asians, weaning babies, gluten intolerance sufferers and those consuming rice milk. The book also presents the information of arsenic concentration and speciation in other major crops and outlines approaches for lowering arsenic in rice grain and in the human diet through agronomic management."
Sequencing projects have revealed the presence of at least several hundred receptor kinases in a typical plant genome. Receptor kinases are therefore the largest family of primary signal transducers in plants, and their abundance suggests an immense signaling network that we have only just begun to uncover. Recent research findings indicate that individual receptor kinases fulfill important roles in growth and development, in the recognition of pathogens and symbionts or, in a few examples, in both growth and defense. This volume will focus on the roles of receptor kinases, their signaling pathways, and the ways in which these important signaling proteins are regulated.
Secretions and emissions in biological systems play important signaling roles within the organism but also in its communications with the surrounding environment. This volume brings together state-of-the-art information on the role of secretions and emissions in different organs and organisms ranging from flowers and roots of plants to nematodes and human organs. The plant chapters relate information regarding the biochemistry of flower volatiles and root exudates, and their role in attracting pollinators and soil microbial communities respectively. Microbial chapters explain the biochemistry and ecology of quorum sensing and how microbial communities highly co-adapted to plants can aid in bio-energy applications by degrading ligno-cellulosic materials. Other chapters explain the biology of secretions by nematodes, algae and humans, among other organisms. This volume will be a welcome addition to the literature, as no other book covers aspects related to biological secretion in such a holistic and integrative manner.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
Along the undisturbed shores, especially of the Mediterranean Sea and the European North Atlantic Ocean, is a quite widespread plant called Beta maritima by botanists, or more commonly sea beet. Nothing, for the inexperienced observer's eye, distinguishes it from surrounding wild vegetation. Despite its inconspicuous and nearly invisible flowers, the plant has had and will have invaluable economic and scientific importance. Indeed, according to Linne, it is considered "the progenitor of the beet crops possibly born from Beta maritima in some foreign country". Recent molecular research confirmed this lineage. Selection applied after domestication has created many cultivated types with different destinations. The wild plant always has been harvested and used both for food and as a medicinal herb. Sea beet crosses easily with the cultivated types. This facilitates the transmission of genetic traits lost during domestication, which selection processes aimed only at features immediately useful to farmers and consumers may have depleted. Indeed, as with several crop wild relatives, Beta maritima has been successfully used to improve cultivated beet's genetic resistances against many diseases and pests. In fact, sugar beet cultivation currently would be impossible in many countries without the recovery of traits preserved in the wild germplasm. Dr. Enrico Biancardi graduated from Bologna University. From 1977 until 2009, he was involved in sugar beet breeding activity by the Istituto Sperimentale per le Colture Industriali (ISCI) formerly Stazione Sperimentale di Bieticoltura (Rovigo, Italy), where he released rhizomania and cercospora resistant germplasm and collected seeds of Mediterranean sea beet populations as a genetic resource for breeding and ex situ conservation. Retired since 2009, he still collaborates with several working breeders, in particular, at the USDA Agricultural Research Stations, at the Chinese Academy of Agricultural Science (CAAS), and at the Athens University (AUA). He has edited books, books chapters and authored more than 150 papers. Dr. Lee Panella is a plant breeder and geneticist with the USDA-ARS at Fort Collins, Colorado. He earned his B.S. in Crop and Soil Science from Michigan State University, an M.S. in Plant Breeding from Texas A&M University, and a Ph.D. in genetics from the University of California at Davis. His research focus is developing disease resistant germplasm using sugar beet wild relatives. He is chairman of the USDA-ARS Sugar Beet Crop Germplasm Committee and has collected and worked extensively with sea beet. Dr. Robert T. Lewellen was raised on a ranch in Eastern Oregon and obtained a B.S. in Crop Science from Oregon State University followed by a Ph.D. from Montana State University in Genetics. From 1966 to 2008 he was a research geneticist for the USDA-ARS at Salinas, California, where he studied the genetics of sugar beet and as a plant breeder, often used sea beet as a genetic source to produce many pest and disease resistant sugar beet germplasm and parental lines, while authoring more than 100 publications.
Metal contamination is an increasing ecological and eco-toxicological risk. Understanding the processes involved in metal mobilization, sorption and mineralization in soils are key features for soil bioremediation. Following an introduction to the physical, chemical and biological components of contaminated soils, various chapters address the interactions of soil, microorganisms, plants and the water phase necessary to transfer metals into biological systems. These include topics such as potential hazards at mining sites; rare earth elements in biotic and abiotic acidic systems; manganese redox reactions; biomineralisation, uranium in seepage water; metal-resistant streptomycetes; mycorrhiza in re-forestation; metal (hyper)accummulation in plants; microbial metal uptake; and their potential for bioremediation. This book will be of interest to soil biologists, geologists and chemists, researchers and graduate students, as well as consulting companies and small enterprises involved in bioremediation.
The Seventh International Symposium on the Structure and Function of Plant Lipids took place at the University of California, Davis, California July 27th to August 1st, 1986. This was the first time the Symposium was held in the United States. The list of previous host cities reads, Norwich, Karlsruhe, Goteborg, Paris, Groningen, Neuchatel. The addition of Davis to this distinguished list was made by the organizers with the doubts of people who give invitations to parties - will anybody come? In fact 155 participants registered and there were 21 spouses in attendance. The scientific program was composed of nine sessions: biochemistry of isoprenoids and sterols, function of isoprenoids and sterols, structure and function of lipids, biosynthesis of complex lipids, fatty acid oxygenases and desaturases, medium and long chain fatty acids, interaction of university, government and industrial research, algal lipids, and genetics and biotechnology. In addition to these sessions of plenary lectures, there were four poster sessions in which about 140 posters were presented. All of this was packed into four days, and there was some comment about the scarcity of time to ask questions of the speakers, discuss the posters and even to eat lunch. The compression of the program was a result of the continued desire of the organizing committees to avoid concurrent sessions. The congregation of participants into a single session increases interaction and generates a feeling of unity at these symposia.
Since the publication of the first edition of this book ten years ago, international research into the physiological ecology of plants in the tropics has increased enormously in quantity and quality. This brand new edition brings the story right up to date. New approaches have been developed in remote sensing while at the other end of the scale molecular biology has come on in leaps and bounds, particularly regarding ecological performance of tropical plants, e.g. in understanding the adaptation of resurrection plants to the extreme habitat of inselbergs. In this fully revised and updated second edition the wealth of new information has made it necessary to break large chapters down into smaller ones.
Experience shows that biotic stresses occur with different levels of intensity in nearly all agricultural areas around the world. The occurrence of insects, weeds and diseases caused by fungi, bacteria or viruses may not be relevant in a specific year but they usually harm yield in most years. Global warming has shifted the paradigm of biotic stresses in most growing areas, especially in the tropical countries, sparking intense discussions in scientific forums. This book was written with the idea of collecting in a single publication the most recent advances and discoveries concerning breeding for biotic stresses, covering all major classes of biotic challenges to agriculture and food production. Accordingly, it presents the state-of-the-art in plant stresses caused by all microorganisms, weeds and insects and how to breed for them. Complementing Plant Breeding for Abiotic Stress Tolerance, this book was written for scientists and students interested in learning how to breed for biotic stress scenarios, allowing them to develop a greater understanding of the basic mechanisms of resistance to biotic stresses and develop resistant cultivars.
This new edition of an established title examines the determination of grain crop yield from a unique perspective, by concentrating on the influence of the seed itself. As the food supply for an expanding world population is based on grain crops harvested for their seeds, understanding the process of seed growth and its regulation is crucial to our efforts to increase production and meet the needs of that population. Yield of grain crops is determined by their assimilatory processes such as photosynthesis and the biosynthetic processes in the seed, which are partly regulated within the seed itself. Providing a timely update in this field and highlighting the impact of the seed on grain crop yields, this book: * Describes all aspects of seed growth and development, including environmental and genetic effects on growth rate and length of the filling period. * Discusses the role of the seed in determining the two main yield components: individual seed weight and number of seeds per unit area. * Uses the concepts and models that have been developed to understand crop management and yield improvement. Substantially updated with new research and further developments of the practical applications of the concepts explored, this book is essential reading for those concerned with seed science and crop yield, including agronomists, crop physiologists, plant breeders, and extension workers. It is also a valuable source of information for lecturers and graduate students of agronomy and plant physiology.
These proceedings bring together diverse disciplines that study nitrogen fixation and describe the most recent advances made in various fields: chemists are now studying FeMoco, the active site of nitrogenase in non-protein surroundings, and have refined the crystal structure of the enzyme to 1.6 angstroms.
The tomato is commercially important throughout the world both for the fresh fruit market and the processed food industries. It is grown in a wide range of climates in the field, under protection in plastic greenhouses and in heated glasshouses. Genetic, physiological and pathological investigations frequently adopt the tomato plant as a convenient subject. Hitherto, much of the information on tomatoes has been fragmented: tomatoes grown in the field and under protection have been considered separately and the more fundamental findings from research have often failed to reach those involved directly or indirectly in commercial crop production. Similarly, the research scientist is often unaware of the problems of commercial crop production and the possible relevance of his work to the crop. This book is an attempt to rectify that situation. By giving a thorough scientific review of all factors influencing tomato production systems, it is hoped that this book will prove useful to students, researchers and commercial producers alike. It gives the basis for the develop ment of improved cultivars, the formulation of strategies for managing pest, disease and disorder problems and the production of high yields of good quality fruit as well as suggesting important areas for scientific initiatives. The extensive bibliographies provide a comprehensive database for tomato researchers. Such a vast subject could not be covered with authority by anyone author."
The Molecular Biology ofChloroplasts and a genetic dissection ofphotosynthesis was first Mitochondria in Chlamydomonas is the seventh recognized by Paul Levine. Together with his volume to be published in the series Advances in coworkers, he initiated along-rangegenetic approach Photosynthesis of Kluwer Academic Publishers which proved to be highly successful. It provided (Series Editor: Govindjee). Volume 1 dealtwith The genetic support for the linear Z scheme of Molecular Biology of Cyanobacteria; Volume 2 with photosynthesis and led to the identification ofnew Anoxygenic PhotosyntheticBacteria; Volume 3 with components ofthe photosynthetic electron transfer BiophysicalTechniques in Photosynthesis; Volume 4 chain such astheRieskeproteinofthe cytochrome with Photosynthesis and the Environment; and complex. Volume 6 with Lipids in Photosynthesis: Structure, During the past 20 years, the powerful techniques of molecular biology and genetics, and the Function and Genetics. The main goal ofthis book is to provide a development ofmethods for efficient nuclear and comprehensive overview ofcurrent research with chloroplast transformation of C. reinhardtii have the green alga Chlamydomonas on chloroplast and greatly enhanced the potential ofthis organism as an mitochondrial biogenesis and function, with special experimental system for studying chloroplast emphasis on the assembly and structure-function biogenesis. This has led to impressive advances in relationships ofthe constituents ofthe photosynthetic our understanding of the regulation of chloroplast apparatus.
A shortage of water exists, not only in the arid regions of the world, but even in some moderately humid climates. This situation is a consequence of water require ments for agriculture and industry in amounts greater than the natural surplus. Even in Europe there is increased anxiety over the state of water reserves, and shortages are forecast for the near future if industry continues to expand. During the past 50 years in the United States, water use has increased about twice as fast as the rate of population growth, and shortages have already appeared in some places. The need to conserve declining water resources which has become apparent over the last few decades has led several investigators to conclude that plants with a high rate of transpiration endanger water resources, and the growth of such plants must not be encouraged. Some think that trees withdraw more water from the soil than other plant species and evaporate it excessively through the stomata of leaves. THORNTHWAITE and HARE (1955) explained transpiration on the same thermo dynamic basis as evaporation, and calculated its rate, using DALTON'S law or modifications thereof. In spite ofthe many past and present investigations into the problems of transpiration, the biological aspects of this essential process is still poorly understood."
The progress in photosynthesis research has been transduction and expression of photosynthetic genes quite dramatic during the last two decades. The which occur both in the nuclear/cytosol compartment Nobel prizes awarded to Peter Mitchel (1978), to and in the chloroplast. Several chapters are devoted Johannes Deisenhofer, Hartmut Michel and Robert to the transcription machinery and the two plastid Huber (1988), to Rudolf Marcus (1992) and to Paul RNA-polymerase complexes, to the regulation of Boyer and John Walker (1997) have recognized photosynthesis genes by redox signaling both in directly or indirectly the structural or mechanistic chloroplasts and in the prokaryotic systems, as well discoveries related to the photosynthetic energy as to the sugar sensing mechanisms. Chapters also conversion. Actually, photosynthesis may be the first cover important regulatory aspects imposed by po- biological process described, not only in molecular transcriptional modifications and degradation of terms, but even in atomic terms. mRNA molecules, and the translational regulation Much of the excitement around photosynthesis is mechanisms operating in chloroplasts. based upon the connection between light and life. Part III Biogenesis, turnover and senescence is closely connected to the question of regulation. Light is an elusive substrate that cannot be handled The chapters included emphasize how the c- in the same way as conventional chemical substrates plicated membrane structures, composed of both in biological metabolic reactions."
Desiccation tolerance was essential when plants first began to conquer land, roughly 400 million years ago. While most desiccation-tolerant plants belong to basal phylogenetic taxa, this capacity has also evolved among some vascular plant species. In this volume renowned experts treat plant desiccation tolerance at the organismic as well as at the cellular level. The diversity of ecophysiological adaptations and acclimations of cyanobacteria, eukaryotic algae, mosses, and lichens is addressed in several chapters. The particular problems of vascular plants during dehydration/rehydration cycles resulting not only from their hydraulic architectures, but also from severe secondary stresses associated with the desiccated state are discussed. Based on the treatment of desiccation tolerance at the organismic level, a second section of the book is devoted to the cell biological level. It delineates the general concepts of functional genomics, epigenetics, genetics, molecular biology and the sensing and signalling networks of systems biology involved in dehydration/rehydration cycles. This book provides an invaluable compilation of current knowledge, which is a prerequisite for a better understanding of plant desiccation tolerance in natural as well as agro- and forest ecosystems where water is one of the most essential resources.
Precise regulation of gene expression in both time and space is vital to plant growth, development and adaptation to biotic and abiotic stress conditions. This is achieved by multiple mechanisms, with perhaps the most important control being exerted at the level of transcription. However, with the recent discovery of microRNAs another ubiquitous mode of gene regulation that occurs at the post-transcriptional level has been identified. MicroRNAs can silence gene expression by targeting complementary or partially complementary mRNAs for degradation or translational inhibition. Recent studies have revealed that microRNAs play fundamental roles in plant growth and development, as well as in adaptation to biotic and abiotic stresses. This book highlights the roles of individual miRNAs that control and regulate diverse aspects of plant processes.
The study of water stress is one of the most interesting subjects in. the investigation of water relations in plants. From the theoretical point of view it is concerned with investigating the mechanisms of the distribution and movement of water in the plant organism and the way in which physiolo gical processes are influenced by water deficiency. From the practical point of view, water deficiency is a major factor limiting plant production. It has been progressively shown that water deficiency is not by far* only a factor in plant life in dry climates, that obvious wilting is not the first warning sign of water deficiency and that moderate water stress, caused by temporary negative water balance during the day, affects physiological ac tivity and decreases prodnction in the ecological conditions of the temperate zone. In addition, even general water deficiency is not today confined to arid or semi-arid zones and to the absolutely dry season of the year. The tremend ous consumption of water in our civilization has become today, even in the temperate zone, an important competitor with the plant cover. The study of water relations from the aspect of water stress is, therefore, important both theoretically and practically. I assume, therefore, that it was useful, important and interesting to meet in a symposium on water stress in plants and to discuss, as far as possible, in detail problems which are obviously among the main, whose solution would help plant physiology in increasing and improving plant production.
The motivation for us to conceive this series of volumes on regulation was mainly our belief that it would be fun, and at the same time productive, to approach the subject in a way that differs from that of other treatises. We thought it might be interesting and instructive for both author and reader-to examine a particular area of investigation in a framework of many different problems. Cutting across the traditional boundaries that have separated the subjects in past volumes on regulation is not an easy thing to do-not because it is difficult to think of what interesting topics should replace the old ones, but because it is difficult to find authors who are willing to write about areas outside those pursued in their own laboratories. Anyone who takes on the task of reviewing a broad area of interest must weave together its various parts by picking up the threads from many different laboratories, and attempt to produce a fabric with a meaningful design. Finding persons who are likely to succeed in such a task was the most difficult part of our job. In the first volume of this treatise, most of the chapters dealt with the mechanisms of The second volume involved a somewhat regulation of gene expression in microorganisms. broader area, spanning the prokaryotic-eukaryotic border. Topics ranged from phage mor phogenesis to the role of gradients in development. The last volume-Volume 3A-con cerned hormones, as does this volume-Volume 3B.
Scientists are continually making exciting discoveries concerning the interactions between microbes and plants, interactions which may be damaging, in the case of plant pathogens, or beneficial, as in the case of nitrogen fixation. This new volume in the successful and well received Chapman & Hall Plant-Microbe Interaction series is an exciting and broad-ranging view of the outstanding work being done in this area.
Our view of plants is changing dramatically. Rather than being only slowly responding organisms, their signaling is often very fast and signals, both of endogenous and exogenous origin, spread throughout plant bodies rapidly. Higher plants coordinate and integrate their tissues and organs via sophisticated sensory systems, which sensitively screen both internal and external factors, feeding them information through both chemical and electrical systemic long-distance communication channels. This revolution in our understanding of higher plants started some twenty years ago with the discovery of systemin and rapid advances continue to be made. This volume captures the current 'state of the art' of this exciting topic in plant sciences.
This book covers the hot topics of angiosperm structure and evolution in several chapters discussing vegetative and reproductive characters. It also looks at the implications of ancestral angiosperm characters for an herbaceous origin and the phylogeny of angiosperms from a structure and molecular perspective.
The Genetics and Genomics of the Brassicaceae provides a review of this important family (commonly termed the mustard family, or Cruciferae). The family contains several cultivated species, including radish, rocket, watercress, wasabi and horseradish, in addition to the vegetable and oil crops of the Brassica genus. There are numerous further species with great potential for exploitation in 21st century agriculture, particularly as sources of bioactive chemicals. These opportunities are reviewed, in the context of the Brassicaceae in agriculture. More detailed descriptions are provided of the genetics of the cultivated Brassica crops, including both the species producing most of the brassica vegetable crops (B. rapa and B. oleracea) and the principal species producing oilseed crops (B. napus and B. juncea). The Brassicaceae also include important "model" plant species. Most prominent is Arabidopsis thaliana, the first plant species to have its genome sequenced. Natural genetic variation is reviewed for A. thaliana, as are the genetics of the closely related A. lyrata and of the genus Capsella. Self incompatibility is widespread in the Brassicaceae, and this subject is reviewed. Interest arising from both the commercial value of crop species of the Brassicaceae and the importance of Arabidopsis thaliana as a model species, has led to the development of numerous resources to support research. These are reviewed, including germplasm and genomic library resources, and resources for reverse genetics, metabolomics, bioinformatics and transformation. Molecular studies of the genomes of species of the Brassicaceae revealed extensive genome duplication, indicative of multiple polyploidy events during evolution. In some species, such as Brassica napus, there is evidence of multiple rounds of polyploidy during its relatively recent evolution, thus the Brassicaceae represent an excellent model system for the study of the impacts of polyploidy and the subsequent process of diploidisation, whereby the genome stabilises. Sequence-level characterization of the genomes of Arabidopsis thaliana and Brassica rapa are presented, along with summaries of comparative studies conducted at both linkage map and sequence level, and analysis of the structural and functional evolution of resynthesised polyploids, along with a description of the phylogeny and karyotype evolution of the Brassicaceae. Finally, some perspectives of the editors are presented. These focus upon the Brassicaceae species as models for studying genome evolution following polyploidy, the impact of advances in genome sequencing technology, prospects for future transcriptome analysis and upcoming model systems.
Photosynthesis--the capture of light energy by living organisms -is a simple enough concept, but its investigation draws on the resources of disciplines from all fields of science. The aim of this text is to provide a clear, stimulating and essentially affordable coverage for undergraduate students of biology. The activity of science is debate and practical experiment; its product is a body of propositions which at any given time reflects the judgment and prejudices of those taking part. The value of a proposition is related to the conceivable alternatives, and writing it down without its context creates the false impression that science progresses by compilation of an increasing list of absolute truths. It does not; the facts and figures pres ented in the following pages have no intrinsic value unless they can be used by the reader to support an argument or point of view. In short, the reader is urged to respond 'So what?' to every item. Secondly, ideas-like other foods-should be date-stamped; science is inseparable from its history. I have set out time-charts to represent the evolution of our understanding in certain areas. I have assumed that the reader is pursuing a course with a content of biochemistry, microbiology and plant science, or has access to basic texts. I have assumed also that common methods such as spectrophotometry, chromatography and electrophoresis, as well as the techniques of mol ecular biology, will be either part of the same course or in active use nearby." |
![]() ![]() You may like...
Salish Languages and Linguistics…
Ewa Czaykowska-Higgins, M. Dale Kinkade
Hardcover
R6,950
Discovery Miles 69 500
Linguistics Meets Literature - More on…
Matthias Bauer, Sigrid Beck, …
Hardcover
R3,757
Discovery Miles 37 570
Recent Advances in Engineering…
Mohamed Hesham Farouk, Maha Amin Hassanein
Hardcover
R2,941
Discovery Miles 29 410
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Model Predictive Vibration Control…
Gergely Takacs, Boris Rohal-Ilkiv
Hardcover
R6,421
Discovery Miles 64 210
|