![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This book focuses on morphological and anatomical strategies developed by halophytes during evolution that allow them to survive in high-salt environments. These adaptive strategies refer to well integrated structural features, such as succulence, salt secretion (salt glands and vesicular hairs), aerenchyma, Kranz anatomy, bulliform cells, successive cambia, tracheoidioblasts and endodermis with pronounced Casparian strips. The authors present cross sections of the roots, stems and leaves of 62 halophyte species belonging to 18 families from different habitats and climates (temperate, Mediterranean). They also discuss the ecological, physiological and evolutionary aspects of the various adaptive structures in an integrative way. Beginning with the structural level, this book offers novel insights into the ecology of halophytes and opens new perspectives for the identification of salt-tolerant crop plants or halophytes that can be used for ecological purposes, such as bio-remediation and revegetation.
A number of abiotic factors such as drought, salinity, extreme temperatures, low or high light intensity, and deficiency or toxic levels of nutrients have huge impacts on crop productivity, and a furthering of our understanding of the molecular, biochemical, and physiological basis of stress tolerance has been widely recognized as critical. In Plant Stress Tolerance: Methods and Protocols, expert researchers cover the most important widely-used techniques, including cutting-edge strategies, in a manner that ensures effective results. Beginning with reviews on dehydration, salinity, and cold tolerance as well as on oxidative stress, the volume then continues with methods involving topics such as describing the identification of stress-regulated genes, proteins, and microRNAs using diverse approaches, measurement of osmotic adjustment, proline levels, enzymes involved in proline metabolism, and sugars as well as determination of ROS levels, lipid peroxidation, ion leakage, and the enzymes involved in ROS detoxification. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective subjects, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and up-to-date, Plant Stress Tolerance: Methods and Protocols provides a wide range of easy-to-follow protocols catering to the needs of plant physiologists, biochemists, and molecular biologists interested in probing this vital area of study.
This book provides a comprehensive review of all aspects of the molecular and cell biology of abscisic acid (ABA) metabolism, transport and signal transduction, covering our current understanding of ABA as well as research trends. The agricultural significance of ABA metabolism, transport and signal transduction is also discussed. The phytohormone ABA regulates many aspects of plant development and plays a central role in plant adaptation to environmental stresses. Over the past few decades, considerable advances have been made in the study of ABA metabolism, transport and signal transduction, greatly deepening our understanding of the underlying mechanisms of ABA function at the molecular, cell and whole-plant level and helping us improve crops' environmental tolerance. This book provides a valuable resource for researchers and advanced students interested in plant biology and agriculture.
The importance of haploids is well known to geneticists and plant breeders. The discovery of anther-derived haploid Datura plants in 1964 initiated great excitement in the plant breeding and genetics communities as it offered shortcuts in producing highly desirable homozygous plants. Unfortunately, the expected revolution was slow to materialise due to problems in extending methods to other species, including genotypic dependence, recalcitrance, slow development of tissue culture technologies and a lack of knowledge of the underlying processes. Recent years have witnessed great strides in the research and application of haploids in higher plants. After a lull in activities, drivers for the resurgence have been: (1) development of effective tissue culture protocols, (2) identification of genes c- trolling embryogenesis, and (3) large scale and wide spread commercial up-take in plant breeding and plant biotechnology arenas. The first major international symposium on "Haploids in Higher Plants" took place in Guelph, Canada in 1974. At that time there was much excitement about the potential benefits, but in his opening address Sir Ralph Riley offered the following words of caution: "I believe that it is quite likely that haploid research will contr- ute cultivars to agriculture in several crops in the future. However, the more extreme claims of the enthusiasts for haploid breeding must be treated with proper caution. Plant breeding is subject from time to time to sweeping claims from ent- siastic proponents of new procedures.
The field of plant breeding has grown rapidly in the last decade with breakthrough research in genetics and genomics, inbred development, population improvement, hybrids, clones, self-pollinated crops, polyploidy, transgenic breeding and more. This book discusses the latest developments in all these areas but explores the next generation of needs and discoveries including omics beyond genomics, cultivar seeds and intellectual and property rights. This book is a leading-edge publication of the latest results and forecasts important areas of future needs and applications.
This book focuses on recent advances in our understanding of the signal transduction pathway of ethylene, its interaction with other hormones and its roles in biological processes. It discusses at which point plants could have acquired ethylene signaling from an evolutionary perspective. Ethylene was the first gaseous hormone to be identified and triggers various responses in higher plants. Our grasp of ethylene signaling has rapidly expanded over the past two decades, due in part to the isolation of the components involved in the signal transduction pathway. The book offers a helpful guide for plant scientists and graduate students in related areas.
This book provides a comprehensive coverage of the advances in genetics and genomics research on rice. The chapters feature the latest developments in rice research and cover such topics as the tools and resources for the functional analysis of rice genes, the identification of useful genes for rice improvement, the present understanding of rice development and biological processes, and the application of this present understanding towards rice improvement. The volume also features a perspective on synthesis and prospects, laying the groundwork for future advances in rice genetics and genomics. Written by authorities in the field, Genetics and Genomics of Rice will serve as an invaluable reference for rice researchers for years to come.
The cell wall and its constituent polysaccharides and proteins control nearly all plant-based biological and biophysical processes. Understanding the cell wall is, therefore, not only fundamental to the plant sciences but is also pertinent to aspects of human and animal nutrition and health as well as plant-microbe and plant-animal interactions. In The Plant Cell Wall: Methods and Protocols, experts in the field describe detailed methods which are currently being applied to investigate the many aspects of the plant cell wall including its structure, biochemical composition, and metabolism. The book delves into a range of techniques involving plant tissue culture, which can be applied to investigating cell wall structure and metabolism, methods directed towards structural analysis and occurrence of carbohydrates, the development and use of microscopy-based tools and techniques, procedures which measure the physical properties of the wall, and methods based on the application of molecular genetic approaches. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, The Plant Cell Wall: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this essential cellular feature.
Auxin is an important signaling compound in plants and vital for plant development and growth. The present book, Auxin and its Role in Plant Development, provides the reader with detailed and comprehensive insight into the functioning of the molecule on the whole and specifically in plant development. In the first part, the functioning, metabolism and signaling pathways of auxin in plants are explained, the second part depicts the specific role of auxin in plant development and the third part describes the interaction and functioning of the signaling compound upon stimuli of the environment. Each chapter is written by international experts in the respective field and designed for scientists and researchers in plant biology, plant development and cell biology to summarize the recent progress in understanding the role of auxin and suggest future perspectives for auxin research.
This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents. Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.
In order to face new challenges and unique situations in turfgrass management, students need to understand why specific management practices work and how to adjust them based on plants' requirements. Explaining the physiological needs of turfgrass plants, this advanced textbook outlines the management techniques that help supply those needs. Chapters discuss a range of practices and methods to cope with stress under both normal and less than optimum conditions, providing the decision-making tools for improvement based on changing environmental conditions. This textbook presents a unique perspective of both science and practical management principles that will be applicable to all turfgrass sectors.
This book reviews various aspects of papaya genomics, including existing genetic and genomic resources, recent progress on structural and functional genomics, and their applications in papaya improvement. Organized into four sections, the volume explores the origin and domestication of papaya, classic genetics and breeding, recent progress on molecular genetics, and current and future applications of genomic resources for papaya improvement. Bolstered by contributions from authorities in the field, Genetics and Genomics of Papaya is a valuable resource that provides the most up to date information for papaya researchers and plant biologists.
The book "Salicylic acid: A Plant Hormone" was first published in 1997 and was praised for its excellent balance of traditional and modern topics. This time, we're building on the success of the prior edition to provide an even more effective second edition. The present book is comprised of 16 chapters highlighting the updated mechanisms of its biosynthesis, physiological role, its action in response to water deficit, relationship of SA with signal transduction, transport of SA and related compounds. Further, the interplay between environmental signals and SA, its impact on transport and distribution of sugars, salicylic acid mediated stress-induced flowering and some aspects of interplay of SA with JA during the establishment of plant resistance to pathogens with different types of nutrition and participation of peroxidases have also been discussed at length. Potential use of SA in food production and its efficiency on post-harvest of perishable crops as well as practical use of SA are also covered.
Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.
The importance of the plant growth regulator auxin for plant growth has long been recognized, even before the discovery of its chemical structures in the early 20th century. Physiological studies in the decades since have demonstrated that auxin is unidirectionally transported in plants, a process dubbed polar auxin transport. It is the polar auxin transport process that generates a local auxin concentration gradient and regulates a broad array of physiological and developmental processes. The discoveries of auxin transport carrier proteins that mediate auxin influx into and efflux out of transport-competent cells and auxin receptor proteins for auxin signaling in the last few decades represent significant milestones in auxin research and open up opportunities to probe the cellular and molecular processes that regulate auxin transport and integrate environmental cues with signaling processes. Remarkably, components of the polar auxin transport machinery are present in both lower plants such as mosses and higher plants including monocots and eudicots, illustrating the key role of polar auxin transport in plant evolution. This book highlights topics ranging from physiological and genetic studies of polar auxin transport in plant development, to growth responses to the environment and plant-microbe interactions, to hormonal cross-talks with various cellular and molecular regulatory processes essential for polar auxin transport.
Floral morphology is key for understanding floral evolution and plant identification. Floral diagrams are two-dimensional representations of flowers that replace extensive descriptions or elaborate drawings to convey information in a clear and unbiased way. Following the same outline as the first edition, this comprehensive guide includes updated and relevant literature, represents the latest phylogeny, and features 28 new diagrams. Diagrams are presented in the context of the most recent classifications, covering a variety of families and illustrating the floral diversity of major groups of plants. A strong didactic tool for observing and understanding floral structures, these diagrams are the obvious counterpart to any genetic study in flowering plants and to the discussion of major adaptations and evolutionary trends of flowers. This book is invaluable for researchers and students working on plant structure, development and systematics, as well as being an important resource for plant ecologists, evolutionary botanists and horticulturists.
This book was written in response to significant recent advances in understanding the mechanisms of parasitism in the Orobanchaceae, and breakthroughs in the control of the parasitic weeds Striga and Orobanche. It consists of 26 contributions by internationally recognized leading scientists. The main book chapters are grouped into two parts: * Part I - The Orobanchaceae and Their Parasitic Mechanisms * Part II - The Weedy Orobanchaceae and Their Control The first part provides cutting-edge information on all key aspects of plant parasitism, such as the structure, development and function of the haustorium; nutrient transfer and the physiology of the parasite-host association; host reaction to parasitic plants; seed production and germination; the strigolactones and host-parasite signaling mechanisms; the parasite genome, phylogenetics, evolution and epigenetics; and ecology. Topics of the second part include: the problem posed by the weedy parasites; population diversity and dynamics; molecular diagnosis of seed banks; and detailed discussion of the various management strategies, including agronomic, chemical and biotechnological approaches, as well as host breeding for resistance, allelopathy and biological control. This book is intended for plant scientists, university lecturers and students, agronomists and weed specialists, breeders and farmers, extension personnel and experts in tropical and subtropical agriculture.
Completing the primary genomic sequence of Arabidopsis thaliana was a major milestone, being the first plant genome and well established as the premiere model species in plant biology. Since working drafts of rice (Oryza sativa L.) genome became available (Yu et al. 2002), it has become the s- ond-best model organism in plants representing monocotyledons. Understanding how the genome sequence comprehensively encodes de- lopmental programs and environmental responses is the next major ch- lenge for all plant genome projects. This requires functional characterization of genes, including identification of regulatory sequences. Several functional genomics approaches were initiated to decode the linear sequence of the model plant Arabidopsis thaliana, including full-length cDNA collections, microarrays, natural variation, knockout collections, and comparative sequence analysis (Borevitz and Ecker 2004). Genomics provides the ess- tial tools to speed up the research work of the traditional molecular gene- cist, and is now a scientific discipline in its own right (Borevitz and Ecker 2004).
G proteins are the key regulators for a wide range of cellular processes in animals and plants. In comparison to animals and yeast, plants have a single Rho-GTPase subfamily called Rho-like GTPases (ROPs). The ROP family of monomeric GTPases has emerged as a versatile and key regulator in plant signal transduction processes. During the past few years' studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Studies have shown that plants have evolved specific regulators and effector molecules. ROP GTPases possess the ability to interact with these multiple regulator and effector molecules that ultimately determines their signaling specificity. Recently, genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. And we have been able to identify four new homologs in the rice genome. Here, we focus on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. Also, we are summarizing the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data. Overall, we will be discussing the functional genomic perspective of plant Rho like GTPases and their role in regulating several physiological processes such as stress, hormonal, pollen tube, root hair-growth and other developmental responses.
Plant Nutrition - From Genetic Engineering to Field Practice, the 12th International Colloquium on Plant Nutrition, is the latest in a series which began in 1954. Early meetings were mainly concerned with the practical problems of soil fertility, with soil assessment, fertilizer requirements and methods of analysis. As the colloquia have progressed, the emphasis has slowly changed. The practical problems are still important, but there is increasing emphasis on plant physiology, plant biochemistry, membrane biochemistry, and even on the chemistry of genes which control the proteins which transfer nutrient ions to the inside of cells. The meetings therefore provide a valuable opportunity for each half of the science of plant nutrition to interact with, and learn from the other half. This volume begins with five papers which review current knowledge in important fields: the rhizosphere, molecular biology, electron microscopy, location and function of elements in vivo, and modelling nutrient responses in the field. These themes are continued in groups of shorter papers which follow. In addition, there are sections on nutrient dynamics and partitioning, diagnostic techniques, plant survival strategies, mycorrhizas, and on nutrients such as P, N, S, K, Ca, Mg, and micronutrients. A large section is devoted specifically to boron - reflecting the considerable current interest in this element. In total there are 177 refereed papers providing both a broad overview and a detailed picture of the latest developments in pure and applied plant nutrition.
This volume is a compilation of extended abstracts of all papers presented at the 14th International Plant Nutrition Colloquium. Over 500 oral and poster presentations illustrate current knowledge and research emphasis in this subject, providing a comprehensive view of the state of plant nutrition research.
Exactly 35 years after the first Colloquium was held, the Eleventh International Plant Nutrition Colloquium took place from 30 July to 4 August 1989 in Wageningen, The Netherlands. Although impressive progress has been made during the past decades in our understanding of the mechanisms of uptake, distribution and assimilation of nutrients in relation to crop yield and quality, there are still significant gaps in our insight into many fundamental aspects of plant mineral nutrition and related metabolic processes. In spite of improved knowledge of nutrient requirements of crops and improved fertilizer application strategies, the world population remains to be burdened with an enormous shortage of plant products for food, timber, fuel, shelter, and other purposes. The main challenge facing the plant nutrition research community is to at least alleviate the increasing world-wide need for applying scientific knowledge to practical problems in agriculture, horticulture, and forestry. It is therefore felt by many scientists that the Plant Nutrition Colloquia, which are intended to bring together scientists and to integrate knowledge and approaches acquired in plant physiology, biochemis try, soil science, agronomy and related disciplines, have indeed made a significant contribution to the advancement of our knowledge and understanding in this vital and interdisciplinary field of agrobiology. About 260 scientists from 40 nations attended the Colloquium in Wageningen.
In the last half century, because of the raising world population and because of the many environmental issues posed by the industrialization, the amount of arable land per person has declined from 0.32 ha in 1961-1963 to 0.21 ha in 1997-1999 and is expected to drop further to 0.16 ha by 2030 and therefore is a severe menace to food security (FAO 2006). At the same time, about 12 million ha of irrigated land in the developing world has lost its productivity due to waterlogging and salinity. Waterlogging is a major problem for plant cultivation in many regions of the world. The reasons are in part due to climatic change that leads to the increased number of precipitations of great intensity, in part to land degradation. Considering India alone, the total area suffering from waterlogging is estimated to be about 3.3 million ha (Bhattacharya 1992), the major causes of waterlogging include super- ous irrigation supplies, seepage losses from canal, impeded sub-surface drainage, and lack of proper land development. In addition, many irrigated areas are s- jected to yield decline because of waterlogging due to inadequate drainage systems. Worldwide, it has been estimated that at least one-tenth of the irrigated cropland suffers from waterlogging.
"The path of carbon in photosynthesis"for Progress in Botany: 50 years of Calvin-Benson cycle - 30 years of Kelly-Latzko reviews While writing this Foreword and trying to focus my thoughts on the bioch- istry of photosynthesis, a handsome slim hardcover booklet of 104 pages bound in dark blue linen is in front of me on my desk: "The Path of Carbon in Photosynthesis" J. A. Bassham and M. Calvin,1957 I acquired it in the month of my oral Ph. D. -exams,April 1960,to get prepared with the Nobel-laureate's text. In 2004 in his last swan-song review for Progress in Botany Grahame J. Kelly celebrated "The Calvin cycle's golden jubilee"in an overview of 50 years of carbon flowing for the progress in botany. He had met Erwin Latzko in 1970 in another then foremost and now historic place of the biochemistry of photosynthesis, the laboratory of Martin Gibbs at Brandeis University, Massachusetts. Four years later Latzko and Kelly (1974) published their first joint review on photosynthetic carbon metabolism,starting off a long flow of articles on the flow of carbon in the series Progress in Botany. Most faithfully they produced regular accounts of the progress in Progress in Botany every second year, and when Erwin Latzko decided to retire after the 1996 review Grahame Kelly carried on alone.
This book provides a comprehensive overview of the multiple strategies that plants have developed to cope with drought, one of the most severe environmental stresses. Experts in the field present 17 chapters, each of which focuses on a basic concept as well as the latest findings. The following major aspects are covered in the book: * Morphological and anatomical adaptations * Physiological responses * Biochemical and molecular responses * Ecophysiological responses * Responses to drought under field conditions The contributions will serve as an invaluable source of information for researchers and advanced students in the fields of plant sciences, agriculture, ecophysiology, biochemistry and molecular biology. |
![]() ![]() You may like...
Cosine-/Sine-Modulated Filter Banks…
Vladimir Britanak, K.R. Rao
Hardcover
R5,778
Discovery Miles 57 780
Land Cover and Land Use Change on…
Stephen J. Walsh, Diego Riveros-Iregui, …
Hardcover
R2,911
Discovery Miles 29 110
Database Solutions - A step by step…
Thomas Connolly, Carolyn Begg
Paperback
R2,256
Discovery Miles 22 560
Learn to Design a Website for Your…
Michael Nelson, David Ezeanaka
Hardcover
R502
Discovery Miles 5 020
Conceptual Modeling Perspectives
Jordi Cabot, Cristina Gomez, …
Hardcover
Handbook of Big Data Privacy
Kim-Kwang Raymond Choo, Ali Dehghantanha
Hardcover
R5,149
Discovery Miles 51 490
|