![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
This book addresses the responses of plants to salinity. Although salinity is a common environmental factor for marine organisms, for the majority of land plants high soil salinity is an environmental constraint that limits growth, productivity, and normal plant functions. Salinity is particularly widespread in arid/semiarid climates where crop production depends on irrigation. A comprehensive approach is taken in this book. After discussing salinity as an environmental soil factor and its global impact on ecosystems, plant responses are covered from the whole-plant level through metabolic changes to the underlying molecular and genetic mechanisms. In contrast to other books in this subject area, which focus on certain aspects of plant responses to salinity or are conference proceedings, this is the only comprehensive new book on this subject, written by experts in the field. The intended level of readership is graduate students and advanced researchers interested in environmental biology and specifically in the area of mechanisms of environment-plant interactions.
This book presents a simple, straightforward discussion of the principles and processes involved in the production of grain yield by agronomic crops, and how these processes underlie and influence management decisions. The focus is on grain crops, principally maize and soybean, although the general principles apply equally well to cereals, grain legumes and oil crops. Management decisions define all cropping systems - what (crop species, variety), where (climate), when (planting date), and how (row spacing and population density) are the fundamental choices. Knowledge of the fundamental processes responsible for plant growth and the accumulation of yield simplifies the decision-making process and leads to improved management decisions, higher grain yields, and cropping systems that are efficient, resilient and sustainable. The contents include: * Basic plant growth processes e.g. photosynthesis, respiration, evapotranspiration * Growth and production of yield * Crop management - seed quality, variety selection, plant date, row spacing * Crop production in the future - climate change, GMOs, precision data and new crops Intended for researchers in crop science, agronomy and plant science, and crop production practitioners, this book will enable readers to make better, more informed management decisions; decisions that will help maintain a well-fed world in the future.
The last decade has seen tremendous progress in our knowledge of the pollen development and gene expression on one hand and the characterization of pollen specific proteins on the other. In compiling the chapters for this volume, we have pragmatically categorized these basic developments in pollen molecular biology and biotechnology into two sections based on their applications in agricul ture and implications in medicine. Pollen developmental biology and gene expression: applications in agricul ture. Pollen development is an extremely complex process encompassing a series of biochemical, physiological and genetic events. At the basic level, sporophyt ically expressed genes may expound our knowledge of unique processes of cellular differentiation which ultimately give rise to a full-fledged organism. At the applied level, the studies on the pollen and male sporophyte-specific gene expression, and of promoters and transcription factors of relevant genes have the potential to manipulate the fertility in certain cash crops leading to agricultural biotechnology."
Plants are composed of 17 essential and at least 5 beneficial elements, and these must be taken up as metal or nutrient ions to allow for growth and cell division. Much effort has been devoted to studying the physiology and biochemistry of metals and nutrients in plants. The aspect of cell biology, however, is an emerging new field and much needs to be learned about sensing, long-distance communication within plants, and cellular signal transduction chains in response to environmental stress. Cellular malfunction and consequently disease result when any of the key steps in metal and nutrient homeostasis are disrupted. Working together, leading experts in their respective fields provide a new concept that reaches beyond plant nutrition and plasmalemma transport into cellular physiology. Each chapter contains basic information on uptake, physiological function, deficiency and toxicity syndromes, long-distance and intracellular transport. The discussion is devoted to metals and nutrients where recent progress has been made and highlights the aspects of homeostasis and sensing, signaling and regulation, drawing parallels to other organisms including humans. Finally, the book identifies gaps in our current knowledge and lays out future research directions.
Note Not long after publication of Orchid Biology, Reviews and Perspectives (OB) volume VII, my co-editor, Dr. Alec M. Pridgeon informed me that the pressure of other duties, especially the editing of Genera Orchidacearum (GO) will make it impossible for him to continue as co-editor and eventually editor ofthe series. Alec is an excellent orchid scientist and editor. I was sorry to that he had to leave OB, but glad that GO will be in his able hands. The first volume of GO attests to his considerable abilities and I wish him much success in the future. Editors of orchid publications are not the most common of species (to use a botanical analogy) and finding a replacement for Alec was not easy. However I was fortunate that Dr. Tiiu Kull agreed to become my co-editor and eventually take over the series. As is obvious from the Contributors section Dr. Kull has extensive experience as both writer and editor. My interactions with her while editing this volume have convinced me she is an excellent choice. Scientifically she brings to OB an appreciation and understanding of northern terrestrial orchids, a group, which has not received as much attention as it deserves. Another addition to OB is Dr. Tim Wing Yam who agreed to become an associate editor. Tim, who holds a position at the Singapore Botanic Gardens, will provide expertise on seed germination, hybridization, tissue culture, species and conservation.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. The present volume includes reviews on genetics, cell biology, physiology, comparative morphology, systematics, ecology, and vegetation science.
Sixty years ago at the Waite Agricultural Research Institute, G. Samuel, a plant pathologist, and C. S. Piper, a chemist, published their conclusion that the cause of roadside take-all, a disease of oats, was manganese deficiency. This report, together with the concurrent and independent studies of W. M. Carne in Western Australia were the first records of manganese deficiency in Australia and came only six years after McHargue's paper which is generally accepted as the final proof of the essentiality of this element. There must have been a few doubts for some people at the time, however, as the CAB publication, 'The Minor Elements of the Soil' (1940) expressed the view that further evidence to this effect was provided by Samuel and Piper. Their historic contributions are recognised by the International Symposium on Manganese in Soils and Plants as it meets on the site of their early labours to celebrate the 60th anniversary. This year Australians also acknowledge 200 years of European settlement in this country and so the Symposium is both a Bicentennial and a diamond jubilee event which recognises the impact of trace elements on agricultural development in Australia. In a broader sense, a symposium such as this celebrates, as it reviews, the efforts of all who over the ages have contributed to our knowledge of manganese in soils and plants.
The application of imaging techniques in plant and agricultural sciences had previously been confined to images obtained through remote sensing techniques. Technological advancements now allow image analysis for the nondestructive and objective evaluation of biological objects. This has opened a new window in the field of plant science. Plant Image Analysis: Fundamentals and Applications introduces the basic concepts of image analysis and discusses various techniques in plant imaging, their applications, and future potential. Several types of imaging techniques are discussed including RGB, hyperspectral, thermal, PRI, chlorophyll fluorescence, ROS, and chromosome imaging. The book also covers the use of these techniques in assessing plant growth, early detection of disease and stress, fruit crop yield, plant chromosome analysis, plant phenotyping, and nutrient status both in vivo and in vitro. The book is an authoritative guide for researchers and those teaching in the fields of stress physiology, precision agriculture, agricultural biotechnology, and cell and developmental biology. Graduate students and professionals using machine vision in plant science will also benefit from this comprehensive resource.
The activation of carbon dioxide by transition metal complexes has been extensively studied. both experimentally and theoretically. 1 Central reactions in this chemistry are the insertion of C02 into M-X bonds. where X = H. C. 0. and N. (eq. 1-4). We are presently investigating the mechanistic aspects of these reaction processes and will herein deSCribe our current level of understanding. Comparisons of the pathway of the carbon-carbon bond fonning process in transition metal chemistry with the well known analogous chemistry involving organolithium reagents will be presented. Furthermore. the role of these reaction types in both homogeneous and heterogenous catalytic processes leading to useful chemicals will be elaborated. _OM> (1) lMt-H + ~ lMlopi _OM> (2) [Mt-R + C0. 2 [M]0. 2CR _OM> (3) [Mt-OR+ ~ [M]0. 2COR _OM> (4) [Mt-NR2 + C0. 2 [M]~CNR2 Insertion of C02 into the Metal-Hydride Bond. The reaction of anionic group 6 (Cr. Mo. W) transition metal hydrides with carbon dioxide to afford metalloformates occurs readlly at ambient temperature and 2 reduced pressures of carbon dioxide. This insertion process is referred to the normal pathway (Scheme 1). There are no documented cases of C02 insertion into the metal hydride bond to provide the alternative. metallocarboxylic acid. isomer (referred in Scheme 1 as abnormal). 3 Recent theoretical studies ascribe this preference to an unfavorable electrostatic interaction and poorer orbital overlap in the latter pro 4 cess. Nevertheless.
Mongolia is an expansive land-locked country, tilted by tectonic forces to the North, that experiences extremes of continental climate. Moisture-carrying wind currents are scarce so that the land has extended highs and lows in its environment. Culturally the people are mostly nomadic, having been sustained for centuries by an economy based on domestic livestock grazing. There is a saying that, As the noses go, so goes Mongolia', referring to the domesticated grazing noses of sheep, goats, camels, yaks or horses, and wild ungulates such as gazelles. The vast fenceless steppes of Mongolia furnish the vegetation for grazing. With such extremes in climate it is clear that the vegetation must be resilient and dynamic to cope with the dictates of its extremely harsh environments. Pollen profiles from lakes, plant macrofossils and other data over the last 15,000 years show the dynamic nature of Mongolian vegetation. Currently Mongolian society is experiencing much human-driven economic development which increases pressure on its vegetation. The Great Khural Laws of 1995 forcefully addressed such environmental concerns with the expanded establishment of National Reserves and Parks. But continued effort and vigilance must be expended to insure that Mongolian society will continue to be sustained by its vegetation. This book highlights work such as conserving and restoring plant diversity in various ecosystems and makes recommendations for sustaining the vegetation basis of the nomadic Mongolian society.
The Second International Oat Conference. of which these are the proceedings.was heldat Aberystwyth. 15-18 July.1985. In thebusiness meeting heldatthecloseof theFirstInternational Oat Workshop that was held at PennsylvaniaStateUniversity in 1982. an Internat i ona1 Organsi i ng Committee under the chairmanship of Or KJ Frey was electedto organisethe next conference.and Aberystwyth was proposed and agreed as the venue. The final date of the Second Conferenceand the out 1i ne of the programme. inc1udi ng selection of the rnain speakers. was agreed by the Internat i ona1 Committee but 1oca1 arrangements and finalisation of the programme were delegatedto a local sub-committee centredat the Welsh Plant Breeding Station. We wish to record our appreciationof the work done bythis localcommittee in assuming various organisational responsibilities. From the outsettherewas a firm committmentto makethe Conferenceas international as possible and every effortwas made both to provide a programme thatwouldattract participants from allpartsof the worldand to keep costs to a minimum so as to increasethe chances of potential delegatesbeing ableto attend. Alistof participantsis includedbut it is worthyof notethattwenty-three countr ies were represented. The Conferencewas organisedintoseven half-daysessions. Six of these covered differenttopics relevantto the improvement of oats and the seventhwas a visit to the Welsh PlantBreedingStationwhere laboratory and fieldwork ontheoatcrop was demonstrated.
Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices provides an overview of the recent photosystem II research and the systems available for the bioassay of pollutants using biosensors that are based on the photochemical activity. The data presented in this book serves as a basis for the development of a commercial biosensor for use in rapid pre-screening analyses of photosystem II pollutants, minimising costly and time-consuming laboratory analyses.
The second international symposium on Pectins and Pectinases was organized by Wageningen University and Research Centre and held in Rotterdam, May 6-10, 2001. This successful meeting was attended by around 130 participants from more than 20 countries representing almost all of the groups and industries working woridwide on pectins and pectinases. Following the first meeting on this subject held in December 1995, the symposium defInitely forms a platform for researchers and industries working in the fIeld, all within their own discipline and expertise. The symposium demanded a written account and this book is the resuit of that. It contains aIl keynote lectures and other oral presentations and provides an update about the current research. SignifIcant progress has been made in the last 5 years. This book provides an up-to-date insight into the research on pectin and pectic enzymes involved in their biosynthesis, degradation, modifIcation or utilization. The progress in the elucidation of the chemical structure of pectin and mode of action and 3-D structure of the pectin degrading enzymes allows us to identify and influence the functionality of pectins and pectic enzymes, both in vitra after isolation as weIl in the plants themselves (in planta). Other contributions deal with new applications of both pectin and pectin-degrading enzymes, while more and more attention is paid to health and nutritional aspects ofpectins. The book provides a 'state of the art' account for both beginners and experienced researchers of almost all disciplines of pectin research.
In 1971, the late Dr. J. Kolek of the Institute of Botany, Bratislava, organized the first International Symposium devoted exclusively to plant roots. At that time, perhaps only a few of the participants, gathered together in Tatranska Lomnica, sensed that a new era of root meetings was beginning. Nevertheless, it is now clear that Dr. Kolek's action, undertaken with his characteristic enormous enthusiasm, was rather pioneering, for it started a series a similar meetings. Moreover, what was rather exceptional at the time was the fact that the meeting was devoted to the functioning of just a single organ, the root. One possible reason for the unexpected success of the original, perhaps naive, idea of a Root Symposium might lie with the fact that plant roots have always been extremely popular as experimental material for cytologists, biochemists and physiologists whishing to probe processes as diverse as cell division and solute transport. Of course, the connection of roots with the rest of the plant is not forgotten either. This wide variety of disciplines is now coupled with the development of increasingly sophisticated experimental techniques to study some of these old problems. These factors undoubtedly contribute to the necessity of continuing the tradition of the root symposia. The common theme of root function gives, in addition, a certain unity to all these diverse activities.
As atmospheric CO2 increases there will almost certainly be alterations in soil carbon fluxes. It is likely that such alterations will be accompanied by changes in the partitioning of carbon between organic structures and to soil processes. These changes have the potential for further altering the structure and function of terrestrial ecosystems. While there has been increasing recognition of the importance of soil-mediated responses to global climate change, the nature and magnitude of these responses are not well understood. In an effort to expand our assessment of the significance of belowground responses to rising atmospheric CO2, a workshop has been organized that resulted in the peer-reviewed contributions that are contained in this volume.
Root research under natural field conditions is still a step-child of science. The reason for this is primarily methodological. The known methods are tedious, time consuming, and the accuracy of their results is often not very great. Many research workers have been discouraged by doing such root studies. The need for more information on the development and distribution of plant roots in different soils under various ecological conditions is, however, obvious in many ecological disciplines. Especially the applied botanical sciences such as agriculture, horticulture, and forestry are interested in obtaining more data on plant roots in the soil. This book will give a survey of existing methods in ecological root research. Primarily field methods are presented; techniques for pot experiments are described only so far as they are important for solving ecological problems. Laboratory methods for studying root physiology are not covered in this book. Scientific publications on roots are scattered in many different journals published all over the world. By working through the international root literature I found that about ten thousand papers on root ecology have been published at the present. This is not very much compared with the immense literature on the aboveground parts of the plants, but is, however, too much to cite in this book."
These proceedings of a workshop of the International Association for Phytoplankton Taxonomy and Ecology are directed specifically at the relationship between phytoplankton ecology and the trophic status of water bodies. Contributions address the fact that distinctive assemblages of phytoplankton species are closely associated with particular categories of water bodies. Particular attention is paid to how communities are assembled and to the ways in which environmental constraints filter the successful species. Overview articles are included. The book will be a valuable source of information to limnologists, algologists, and the technical staff of all water suppliers.
Cyanobacterial symbioses are no longer regarded as mere oddities
but as important components of the biosphere, occurring both in
terrestrial and aquatic habitats worldwide. It is becoming apparent
that they can enter into symbiosis with a wider variety of
organisms than hitherto known, and there are many more still to be
discovered, particularly in marine environments. The chapters cover
cyanobacterial symbioses with plants (algae, bryophytes, Azolla,
cycads, Gunnera), cyanobacterial symbioses in marine environments,
lichens, Nostoc-Geosiphon (a fungus closely related to arbuscular
mycorrhiza fungi) symbiosis, and artificial associations of
cyanobacteria with economically important plants. In addition,
cyanobiont diversity, sensing-signalling, and evolutionary aspects
of the symbiosis are dealt with. Renowned experts actively involved
in research on cyanobacterial symbioses deal with ecological,
physiological, biochemical, molecular, and applied aspects of all
known cyanobacterial symbioses.
This book provides a comprehensive and interactive view of recent advances in the cytology, anatomy, and physiology of roots as presented at the 5th International Symposium on Structure and Function of Roots, held on 31 August-4 September, 1998, in Stara Lesna, Slovakia. This edition differs from previous ones by including some aspects of functional genetics and plant morphogenesis. The book is intended to serve both students and researchers as a valuable source of updated information, ideas, and concepts dealing with the most fundamental questions of development and function of plant roots.
Large parts of the continents are covered by a green blanket of living plants. From an insect's point of view this green blanket is not uniform, but consists of a mosaic of resources of variable quality and with various levels of noxious secondary compounds. It is the challenge of phytophagous insects to orientate and reproduce within this mosaic of resources and among hostile competitors and natural enemies. The International Symposia on Insect-Plant Relationships (SIP) provides fora where scientists from different fields (mainly in biology and chemistry) meet and discuss the most recent findings which contribute to our understanding of the complex interactions between plants and insects. The meetings seek to unravel basic mechanisms as well as applied aspects. It is recognized that human activities now have major influence on virtually all the world's ecosystems, and a better understanding of the dynamics of insect-plant interactions may be useful for development of new crop protection strategies and for coping with the threatening loss of biodiversity. The 11th International Symposium on Insect-Plant Relationships (SIP11), held on August 4-10, 2001, in Helsingor, Denmark, followed the tradition of previous SIP meetings and covered topics of different levels from chemistry, physiology, and ethology to ecology, genetics, and evolution of insect-plant relationships. The present volume includes a representative selection of fully refereed papers as well as a complete list of all the contributions which were presented at the meeting. Reviews of selected topics as well as original experimental data are included. The book provides valuable information for students and research workers interested in chemical and biological aspects of interactions between individuals and populations of different organisms. "
Historically, scientists and laymen have regarded salinity as a hazar dous, detrimental phenomenon. This negative view was a principal reason for the lack of agricultural development of most arid and semi arid zones of the world where the major sources of water for biological production are saline. The late Hugo Boyko was probably the first scientist in recent times to challenge this commonly held, pessimistic view of salinity. His research in Israel indicated that many plants can be irrigated with saline water, even at seawater strength, if they are in sandy soil - a technique that could open much barren land to agriculture. This new, even radical, approach to salinity was clearly enunciated in the book he edited and most appropriately entitled 'Salinity and Aridity: New Approaches to Old Problems' (1966). A decade later, three members of the United States National Science Foundation (NSF), Lewis Mayfield, James Aller and Oskar Zaborsky, formulated the 'Biosaline Concept'; namely, that poor soils, high solar insolation and saline water, which prevail in arid lands, should be viewed as useful resources rather than as disadvantages, and that these resources can be used for non-traditional production of food, fuels and chemicals. The First International Workshop on Biosaline Research was con vened at Kiawah Island, South Carolina, in 1977 by A. San Pietro.
The study of air pollution effects on vegetation has made rapid progress in the last five years. Growing concerns about effects of future increases in temperature and carbon dioxide (C0 ) levels on plant life have altered 2 the perspective of plant biologists in the field of pollutant-plant inter actions. In many cases, it is anticipated that crops and trees will increasingly experience multiple stresses in an altered environment: an environment in which physiological processes will no longer be matched to climate. Because of this problem, a major part of the focus of the air pollution effects research has shifted since 1987. Moreover, recent advances in our understanding of plant metabolic and molecular responses to stress have made it clear that many abiotic stresses elicit similar fundamental mechanisms. Adaptation responses to drought, extremes of temperature, xenobiotics and air pollutants are now known to involve the response of both specific and common resistance mechanisms, which often include altered gene expression. The field of air pollution effects on vegetation has benefitted greatly from this unification since results obtained and advances made in allied fields are now directly relevant. The advent of molecular genetics has made possible the production of transgenic plants containing altered amounts of resistance gene products which enables the posing of experimental questions which could not be addressed only five years ago. Hypotheses concerning the relevance of specific metabolites and processes to known responses to air pollution stress can now be tested."
Proceedings of a Seminar in the CEC Programme of the Coordination of Research on Plant Protein Improvement, held in Gembloux, Belgium, Sept. 3-5, 1985
A growing interest has been shown recently in the dymanics of nitrogen in agricultural and natural ecosystems. This has been caused by increasing demands for food and fibre by a rapidly expanding world population, and by a growing concern that increased land clearing, cultivation and use of both fertilizer and biologically fixed nitrogen can have detrimental effects on the environment. These include effects on water quality, eutrophication of surface waters and changes in atmospheric composition all caused by increased cycling of nitrogenous compounds. The input and availability of nitrogen frequently affects the productivity of farming systems more than any other single management factor, but often the nitrogen is used inefficiently. Much of the fertilizer nitrogen applied to the soil is not utilised by the crop: it is lost either in solution form, by leaching of nitrate, or in gaseous forms as ammonia, nitrous oxide, nitric oxide or dinitrogen. The leached nitrate can contaminate rivers and ground waters, while the emitted ammonia can contaminate surface waters or combine with atmospheric sulfur dioxide to form aerosols which affect visibility, health and climate. There is also concern that increased evolution of nitrous oxide will deplete the protective ozone layer of the stratosphere. The possibility of a link between the intensity of agricultural use of nitrogen, nitrous oxide emissions and amounts of stratospheric ozone has focussed attention on these interactions.
This volume presents the proceedings of the Second International Sym posium on Genetic Aspects ofPlant Minerai Nutrition, held in Madison, Wisconsin in 1985. The mechanisms by which plants acquire, transport and utilize essential minerai nutrients are highly complex. The means by which plants either exclude or tolerate ions of metals toxic to plants are equally complex. The first symposium attempted to convene research scientists con cerned with minerai nutrition for the purpose of exploring the kinds of minerai nutrition phenomena identified as being under genetic contro!. The first symposium also placed much emphasis on research to which genetic intervention might be applied. At the second symposium more papers were presented on genetic and breeding research, a long-term objective of the first symposium. The second symposium also included biotic interactions under genetic con trol that either enhanced or impeded ion uptake, e.g. mycorrhizae and nitrogen fixing bacteria. This continuing dialogue is essential for a research area the complexity of which is due to its interdisciplinary nature. |
![]() ![]() You may like...
Recent Advances and Future Perspectives…
Surajit De Mandal, Xiaoxia Xu, …
Paperback
R3,124
Discovery Miles 31 240
Time-dependent Problems in Imaging and…
Barbara Kaltenbacher, Thomas Schuster, …
Hardcover
R4,265
Discovery Miles 42 650
Emerging Nanotechnologies in Immunology…
Ranjita Shegokar, Eliana B. Souto
Hardcover
Advances in Virus Research, Volume 81
Karl Maramorosch, Frederick A. Murphy
Hardcover
R3,654
Discovery Miles 36 540
New Computational Paradigms - Changing…
S. B. Cooper, Benedikt Loewe, …
Hardcover
R4,460
Discovery Miles 44 600
Contemporary Topics in Radiation…
Ravi A Chandra, Lisa A Kachnic, …
Hardcover
R2,280
Discovery Miles 22 800
The Diabetic Patient Agent - Modeling…
Raman Paranjape, Zhanle (Gerald) Wang, …
Hardcover
R1,521
Discovery Miles 15 210
|