![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Plants offer exciting opportunities to understand major biological questions, i.e. the regulation of development and morphogenesis. How are changes of the environment, developmental cues, and other signals perceived and transduced in physiological responses? What are the elements of plant signalling pathways and what is their organization? The panoply of molecular tools and techniques as well as the blossoming field of plant genetics are providing an exciting ground for major breakthroughs in unravelling the fundamental mechanisms of plant signalling. The present book establishes a state-of-the-art framework spanning the wide spectrum of perception, signal transduction events and transport processes, including cell proliferation and cell cycle regulation, embryogenesis, and flowering. Moreover, the volume emphasizes the role of the major plant signalling substances known to date (the phytohormones and more recently studied substances) and summarizes what we know on their molecular mechanisms of action. The book emphasizes how the use of molecular technology has made plant signalling processes accessible to experimental test.
An understanding of the mechanisms by which plants perceive environmental cues, both physical and chemical, and transduce the signals that influence specific expression of genes, is an area of intensive scientific research. With the completion of the genome sequence of Arabidopsis it is understood now that a larger number of genes encode for proteins involved in signalling cascades and transcription factors. In this volume, different chapters deal with plant receptors, second messengers like calcium ions, phosphoinositides, salicylic acid and nitrous oxide, calcium binding proteins and kinases. In addition to dealing with the response of plants to light, hormones, pathogens, heat, etc. on cellular activity, work currently going on in apoptosis, cell division, and plastid gene expression is also covered in this book.
1. 1 THE NEEDFOR THIS BOOK- ANACTIVE EXTRACT, WHAT HAPPENS NEXT? All over the world at present there is greatactivity as scientists investi- gate plants, micro-organisms, marine creatures and many other forms of life for biological activity. There is a desire to find out more about the interactionsbetweenone organismand another which can be attributed to the chemical substances present in at least one of the species con- cerned. The area where activity has been greatest is the effect ofextracts from the flowering plantsonhuman physiology and human pathogens, since this is very relevant to the discovery ofnew drugs for treating dis- eases ofhumanbeings and other mammals. However, it should be noted thatother groups ofliving organisms are now being investigated for the same purposes and regular reports appear in the scientific literature which describe the activity of extracts and compounds isolated from marine organisms, amphibians, fungi and insects. Other types ofchemicallybased biological interactions are being stud- ied which have implications for otherways in which conditions canbe manipulated to serve thehuman race. Thus, interactionsbetweenplants and insects may produce new pesticides or repellents, interactions between two species offlowering plantresultin herbicidalcompounds and the chemical interactionsbetween species have environmental impli- cations. This interdisciplinary science is sometimes called ecological chemistry and offers many fascinating insights into the complexity oflife onour planet. Many methods have beendevised whereby the activity ofa compound or extract can be tested scientifically.
th We compiled this volume mostly from presentations at the 6 International Plant Cold Hardiness Seminar (PCHS) after consulting with Professor Tony H. H. Chen, Oregon State University, USA, Professor Pekka Heino, University of Helsinki, Finland, th and Dr. Gareth J. Warren, University of London, Surrey, UK. The 6 International PCHS was held at the Unitas Congress Center, Helsinki, Finland from July 1-5, 2001. There were 110 registered scientists at the serttinar representing 20 countries: Australia, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, Gennany, Hungary, Iceland, Italy, Japan, Norway, Poland, Spain, Sweden, Taiwan, United Kingdom, and United States of America. The infonnation compiled represents the state of the art of research in phmt cold hardiness in tenns of gene regulation, gene expression, signal transduction, the physiology of cold hardiness and, ultimately, the genetic engineering for cold tolerant plants. The International PCHS was initiated in 1977 at the University of Minnesota, St. Paul, Minnesota. It has been traditionally held at 5-year intervals at various locations. th Because of the rapid advances of research in plant cold hardiness, attendees at the 6 meeting unanimously adopted a resolution to hold the seminar in 3-year intervals instead of 5 in the future. Consequently, the next seminar will be held in 2004 in Sapporo, Japan, and Professor Seizo Fujikawa from Hokkaido University will serve as the host.
The plant hormone auxin plays a fundamental role in the growth and development of plants. Researchers from across the globe are currently attempting to unravel the molecular mechanisms by which auxin controls such diverse processes as cell division, cell elongation, and differentiation. Research questions on auxin action are being addressed using state-of-the-art techniques that are available to cell biologists, geneticists, molecular biologists, biochemists, and physiologists. This text highlights many of the major topics that were covered in a recent workshop that was specifically focused on research into the mechanisms of auxin action. The articles in this text give a current update of the research findings on auxin biosynthesis, metabolism and transport; evolutionary patterns; auxin perception, signal transduction and physiology; auxin-regulated gene expression and protein degradation pathway in auxin responses; and cross-talk between auxin and other plant signalling pathways. This book will be a valuable resource for a wide audience of plant biologists, including researchers and graduate students working in the area of plant hormones, plant biotechnologists, and teaching professionals.
"Ecological Aspects of Nitrogen Acquisition explores not only how plants compete for nitrogen in complex ecological communities The book also looks in greater detail at the associations plants recruit with other organisms, ranging from soil microbes to arthropods, as nitrogen acquisition strategies, and how these contribute to individual and evolutionary fitness. The book is divided into four sections, each addressing an important set of relationships of plants with the environment and how this impacts the plant's ability to compete successfully for nitrogen, often the most growth-limiting nutrient. Ecological Aspects of Nitrogen Acquisition provides thorough coverage of this important topic, and will be a vitally important resource for plant scientists, agronomists, and ecologists"--
This book addresses the responses of plants to salinity. Although salinity is a common environmental factor for marine organisms, for the majority of land plants high soil salinity is an environmental constraint that limits growth, productivity, and normal plant functions. Salinity is particularly widespread in arid/semiarid climates where crop production depends on irrigation. A comprehensive approach is taken in this book. After discussing salinity as an environmental soil factor and its global impact on ecosystems, plant responses are covered from the whole-plant level through metabolic changes to the underlying molecular and genetic mechanisms. In contrast to other books in this subject area, which focus on certain aspects of plant responses to salinity or are conference proceedings, this is the only comprehensive new book on this subject, written by experts in the field. The intended level of readership is graduate students and advanced researchers interested in environmental biology and specifically in the area of mechanisms of environment-plant interactions.
The giant cells of certain algae are of especial value as experimental material for the investigation of physiological problems. This 1975 account gives a historical background to this. The authors consider water relations, ionic relations, the electrical properties of membranes, action potentials, active transport, carbon dioxide and bicarbonate ion transport and use, and protoplasmic streaming. The authors are at pains to point out the general implications of the findings for the plant kingdom and occasionally for the animal kingdom as well. Advanced students, teachers and research workers in plant physiology, cell physiology and biophysics will find this a stimulating account of an important area of research.
Grassland farming in Europe was already established during the settlement of the rst farmers together with their domesticated animals after the last ice age. Since then, grassland provides the forage basis to feed ruminant animals for the p- duction of meat and milk. Depending on the ecological conditions and intensity of usage, various plant communities with different species developed, displaying a rich biodiversity. With the introduction of improved crop rotations at the end of the 16th century, grasses and legumes were also grown to an important extent as forage crops on arable land. In the last decades the importance of amenity grasses increased markedly, due to the demand of the society for new usages like landscape protection. Around 1900 interested farmers and academics identi ed the need for gra- land improvement through systematic selection and seed production. This marks the beginning of breeding and research in companies but also at universities and specialized research institutes. Plant collection started with many of the species that are still of importance today. The collected materials were grouped according to the intended use and some type of phenotypic selection was applied. Seed mul- plication of such populations was performed in pure stands and the harvested seed was marketed. Although the vegetative biomass and its quality are of utmost imp- tance in forage crop breeding, it is the seed yield potential which determines the commercial success of a new variety.
As a member of the working group (WG) on "Temperate Zone Fruit Trees in the Tropics and Subtropics" of the International Society for Horticulture, I was aware of the lack of readily available information needed in many warm-climate locations where temperate fruit crops are grown. The founder of this WG, Frank Dennis, Jr. , was motivated to encourage knowledge transfer by sharing knowledge with many developing countries. We shared his drive and in presenting this book we believe we are doing a service to all persons interested in temperate fruits, but especially to those in tropical and subtropical countries, many of which are developing countries interested in growing these crops and lacking the knowledge needed. In this book, we have collected information covering a variety of different aspects of growing temperate fruit crops in warm climates. As this is the first time such an evaluation of these species has been done, interesting and novel aspects of tree development and fruiting are presented, with stress on elements like dormancy and irrigation that are not of such basic concern in the natural of the temperate zones. We are living in a transition age; horticultural studies habitat are changing and expertise such as can be found in the array of participants in this book is probably not going to be easily found in the future. I hope that this book will broaden our understanding of the fruiting Temperate Zone tree in general and of its adaptation to warm climates, in particular.
This textbook covers Plant Ecology from the molecular to the global level. It covers the following areas in unprecedented breadth and depth: - Molecular ecophysiology (stress physiology: light,
temperature, oxygen deficiency, drought, salt, heavy metals,
xenobiotica and biotic stress factors) The book is carefully structured and well written: complex
issues are elegantly presented and easily understandable. It
contains more than 500 photographs and drawings, mostly in colour,
illustrating the fascinating subject.
The second international symposium on Pectins and Pectinases was organized by Wageningen University and Research Centre and held in Rotterdam, May 6-10, 2001. This successful meeting was attended by around 130 participants from more than 20 countries representing almost all of the groups and industries working woridwide on pectins and pectinases. Following the first meeting on this subject held in December 1995, the symposium defInitely forms a platform for researchers and industries working in the fIeld, all within their own discipline and expertise. The symposium demanded a written account and this book is the resuit of that. It contains aIl keynote lectures and other oral presentations and provides an update about the current research. SignifIcant progress has been made in the last 5 years. This book provides an up-to-date insight into the research on pectin and pectic enzymes involved in their biosynthesis, degradation, modifIcation or utilization. The progress in the elucidation of the chemical structure of pectin and mode of action and 3-D structure of the pectin degrading enzymes allows us to identify and influence the functionality of pectins and pectic enzymes, both in vitra after isolation as weIl in the plants themselves (in planta). Other contributions deal with new applications of both pectin and pectin-degrading enzymes, while more and more attention is paid to health and nutritional aspects ofpectins. The book provides a 'state of the art' account for both beginners and experienced researchers of almost all disciplines of pectin research.
The study of air pollution effects on vegetation has made rapid progress in the last five years. Growing concerns about effects of future increases in temperature and carbon dioxide (C0 ) levels on plant life have altered 2 the perspective of plant biologists in the field of pollutant-plant inter actions. In many cases, it is anticipated that crops and trees will increasingly experience multiple stresses in an altered environment: an environment in which physiological processes will no longer be matched to climate. Because of this problem, a major part of the focus of the air pollution effects research has shifted since 1987. Moreover, recent advances in our understanding of plant metabolic and molecular responses to stress have made it clear that many abiotic stresses elicit similar fundamental mechanisms. Adaptation responses to drought, extremes of temperature, xenobiotics and air pollutants are now known to involve the response of both specific and common resistance mechanisms, which often include altered gene expression. The field of air pollution effects on vegetation has benefitted greatly from this unification since results obtained and advances made in allied fields are now directly relevant. The advent of molecular genetics has made possible the production of transgenic plants containing altered amounts of resistance gene products which enables the posing of experimental questions which could not be addressed only five years ago. Hypotheses concerning the relevance of specific metabolites and processes to known responses to air pollution stress can now be tested."
This account examines plant translocation specifically in the phloem (the tissue that conducts the products of photosynthesis and their metabolytes). It was first published in 1973 and gives a review of the well-established facts, whilst interpreting them in the light of the author's own theory of the mechanism. Professor Canny has produced numerous summaries of published data and recast quantitative information so that material that was scattered throughout the literature and difficult to compare sits together in an easily accessible form. The author has taken care to bring to the attention of the reader important passages from classical works, as well as writings on translocation from the sixties and seventies. The author writes in a lively style that is at once informative and provocative, and the book will appeal to those interested in the historical development of the many exciting and often conflicting theories of phloem transport.
Plant-Microbe Interactions, Volume 1 Many plant-microbe interactions have agronomic importance because of either beneficial (e.g., nitrogen fixation or biocontrol) or detrimental (e.g., pathogen esis) effects. Although these systems have been the subjects of scientific re search for many years, recently there has been a tremendous increase in our knowledge of them. The increases in this research have followed a similar general increase in plant science research. Classical plant science research disciplines (e.g., agronomy, breeding, plant physiology, systematics, etc.) have been affected by an increased focus on molecular biology. These new technologies, as well as advances in other areas, have the effect of blurring the traditional borders between research disciplines. Another factor influencing the development of this research is the increased attention given to environmental issues. These concerns have been brought about by debate over the release of genetically modified organisms and the general concern over environmental quality. Thus, research areas focused on plant-microbe interactions are presently in a period of great excitement and growth that shows every sign of continuing far into the future. As in most research areas, the rate of advance and breadth of disciplines involved in the study of plant-microbe interactions make it impossible for the average researcher or student to stay abreast of the primary scientific literature."
Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1-1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.
Genetic and molecular studies have recently come to dominate botanical research at the expense of more traditional morphological approaches. This broad introduction to modern flower systematics demonstrates the great potential that floral morphology has to complement molecular data in phylogenetic and evolutionary investigations. Contributions from experts in floral morphology and evolution take the reader through examples of how flowers have diversified in a large variety of lineages of extant and fossil flowering plants. They explore angiosperm origins and the early evolution of flowers and analyse the significance of morphological characters for phylogenetic reconstructions on the tree of life. The importance of integrating morphology into modern botanical research is highlighted through case studies exploring specific plant groups where morphological investigations are having a major impact. Examples include the clarification of phylogenetic relationships and understanding the significance and evolution of specific floral characters, such as pollination mechanisms and stamen and carpel numbers.
Mongolia is an expansive land-locked country, tilted by tectonic forces to the North, that experiences extremes of continental climate. Moisture-carrying wind currents are scarce so that the land has extended highs and lows in its environment. Culturally the people are mostly nomadic, having been sustained for centuries by an economy based on domestic livestock grazing. There is a saying that, As the noses go, so goes Mongolia', referring to the domesticated grazing noses of sheep, goats, camels, yaks or horses, and wild ungulates such as gazelles. The vast fenceless steppes of Mongolia furnish the vegetation for grazing. With such extremes in climate it is clear that the vegetation must be resilient and dynamic to cope with the dictates of its extremely harsh environments. Pollen profiles from lakes, plant macrofossils and other data over the last 15,000 years show the dynamic nature of Mongolian vegetation. Currently Mongolian society is experiencing much human-driven economic development which increases pressure on its vegetation. The Great Khural Laws of 1995 forcefully addressed such environmental concerns with the expanded establishment of National Reserves and Parks. But continued effort and vigilance must be expended to insure that Mongolian society will continue to be sustained by its vegetation. This book highlights work such as conserving and restoring plant diversity in various ecosystems and makes recommendations for sustaining the vegetation basis of the nomadic Mongolian society.
From their ability to use energy from sunlight to make their own food, to combating attacks from diseases and predators, plants have evolved an amazing range of life-sustaining strategies. Written with the non-specialist in mind, John King's lively natural history explains how plants function, from how they gain energy and nutrition to how they grow, develop and ultimately die. New to this edition is a section devoted to plants and the environment, exploring how problems created by human activities, such as global warming, pollution of land, water and air, and increasing ocean acidity, are impacting on the lives of plants. King's narrative provides a simple, highly readable introduction, with boxes in each chapter offering additional or more advanced material for readers seeking more detail. He concludes that despite the challenges posed by growing environmental perils, plants will continue to dominate our planet.
Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices provides an overview of the recent photosystem II research and the systems available for the bioassay of pollutants using biosensors that are based on the photochemical activity. The data presented in this book serves as a basis for the development of a commercial biosensor for use in rapid pre-screening analyses of photosystem II pollutants, minimising costly and time-consuming laboratory analyses.
Ultimate success in exploiting the genetic capabilities of plants to grow in nutrient-stressed environments of the semi-arid tropics (SAT) requires a holistic view of food systems to ensure that genetic selections for improved yields on nutrient-poor soils will actually be adopted by farmers. This book sets out to address the important issue of how physiological mechanisms of nutrient uptake can best be combined with genetic options to improve the adaptation of crops to low-nutrient availability, thereby enhancing productivity of nutrient poor soils in the semi-arid tropics. The book examines (i) the sustainability of breeding for low-nutrient environments from the viewpoint of three interrelated disciplines; physiology, breeding, and socio-economics, (ii) candidate mechanisms and physiological traits to enhance uptake and utilization efficiencies, (iii) genetic approaches for manipulation of crop plants to enhance root exudation and access nutrients in the rhizosphere, and (iv) field practices and farmers' preferences for crop varieties grown in low-nutrient environments. Finally, the role of modelling in improving nutrient efficiency in cropping systems, recommendations for future research needs and strategies were highlighted. Attended by 50 international participants, this book is the outcome of the workshop held at ICRISAT-India during 27-30 September 1999 to mark the culmination of the Government of Japan/ICRISAT Project.
As atmospheric CO2 increases there will almost certainly be alterations in soil carbon fluxes. It is likely that such alterations will be accompanied by changes in the partitioning of carbon between organic structures and to soil processes. These changes have the potential for further altering the structure and function of terrestrial ecosystems. While there has been increasing recognition of the importance of soil-mediated responses to global climate change, the nature and magnitude of these responses are not well understood. In an effort to expand our assessment of the significance of belowground responses to rising atmospheric CO2, a workshop has been organized that resulted in the peer-reviewed contributions that are contained in this volume.
Large parts of the continents are covered by a green blanket of living plants. From an insect's point of view this green blanket is not uniform, but consists of a mosaic of resources of variable quality and with various levels of noxious secondary compounds. It is the challenge of phytophagous insects to orientate and reproduce within this mosaic of resources and among hostile competitors and natural enemies. The International Symposia on Insect-Plant Relationships (SIP) provides fora where scientists from different fields (mainly in biology and chemistry) meet and discuss the most recent findings which contribute to our understanding of the complex interactions between plants and insects. The meetings seek to unravel basic mechanisms as well as applied aspects. It is recognized that human activities now have major influence on virtually all the world's ecosystems, and a better understanding of the dynamics of insect-plant interactions may be useful for development of new crop protection strategies and for coping with the threatening loss of biodiversity. The 11th International Symposium on Insect-Plant Relationships (SIP11), held on August 4-10, 2001, in Helsingor, Denmark, followed the tradition of previous SIP meetings and covered topics of different levels from chemistry, physiology, and ethology to ecology, genetics, and evolution of insect-plant relationships. The present volume includes a representative selection of fully refereed papers as well as a complete list of all the contributions which were presented at the meeting. Reviews of selected topics as well as original experimental data are included. The book provides valuable information for students and research workers interested in chemical and biological aspects of interactions between individuals and populations of different organisms. "
Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.
With the new techniques described in this volume, a new gene can be placed on the linkage map within only a few days. Leading researchers have updated the earlier edition to include the latest versions of DNA-based marker maps for a variety of important crops. |
You may like...
Phytochemistry of Fruits and Vegetables
F.A.Tomas- Barberan, R.J. Robins
Hardcover
R6,392
Discovery Miles 63 920
Plant Life under Changing Environment…
Durgesh Kumar Tripathi, Vijay Pratap Pratap Singh, …
Paperback
R6,963
Discovery Miles 69 630
Sustainable Plant Nutrition - Molecular…
Tariq Aftab, Khalid Hakeem
Paperback
R3,925
Discovery Miles 39 250
Plant Stress Physiology - Perspectives…
Mirza Hasanuzzaman, Kamran Nahar
Hardcover
R3,091
Discovery Miles 30 910
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R3,925
Discovery Miles 39 250
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R3,925
Discovery Miles 39 250
|