![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant physiology > General
Comparison is a powerful cognitive research tool in science since it does "across studies" to evaluate similarities and differences, e.g. across taxa or diseases. This book deals with comparative research on plant disease epidemics. Comparisons are done in specifically designed experiments or with posterior analyses. From the apparently unlimited diversity of epidemics of hundreds of diseases, comparative epidemiology may eventually extract a number of basic types. These findings are very important to crop protection. Plant disease epidemiology, being the ecological branch of plant pathology, may also be of value to ecologists, but also epidemiologists in the areas of animal or human diseases may find interesting results, applicable to their areas of research.
Plant Production in Closed Ecosystems provides overviews of the current trends and concepts in plant production in closed or semi-closed environments. The overviews reflect both the present and future challenges that face the agricultural industry and the methods and tools which will meet these challenges. Plant Production in Closed Ecosystems contains the full texts of the Special Lectures from the International Symposium on Plant Production in Closed Ecosystems, plus several contributed papers. The challenges which await the agricultural industry are diverse. This diversity is reflected in the topics that were covered in the special lectures given by experts in the field. These topics included: greenhouse horticulture, hydroponics, micropropagation, food production in space, environmental control, co-generation, controlled ecological life support systems (CELSS), and resource conservation.
During the last two decades the modern techniques of histochemistry, electron microscopy, plant physiology, biochemistry, cell and molecular biology, immunology, and genetics have been applied to investigate the intricacies of the processes involved in embryo formation, and considerable new information has been generated. A better understanding of these processes has enhanced our capacity to manipulate fertilization and embryo development. This has changed the face of the embryology of angiosperms from a descriptive science to an experimental and applied science. The revolutionary progress made in this fascinating field of sexual reproduction was the motivation to prepare this volume. It includes 21 chapters written by experts who have made substantial contributions to their respective fields. It covers all aspects of the embryology of angiosperms, ranging from development, isolation, and structure of male and female gametes, their fusion in vivo and in vitro, and structure, physiology, and genetics of zygotic embryogenesis, to endosperm and seed development. Advances in somatic embryogenesis, synthetic seed technology and regeneration of haploid plants from male and female gametophytes are discussed. Other important topics covered in this volume are sexual incompatibility, parthenocarpy, and apomixis. The last chapter deals with the embryological perspective of inheritance of extra-nuclear genes. All the chapters contain up-to-date information and are profusely illustrated. Graduate and postgraduate students, teachers, and scientists of botany and other areas of plant sciences will find this book extremely useful.
Sulphur (S) plays a pivotal role in various plant growth and development processes being a constituent of sulphur-containing amino acids, cysteine and methionine, and other metabolites viz., glutathione and phytochelatins, co-factor of enzymes which contribute to stress repair and amelioration of heavy metal toxicity. Besides, a number of S-containing components are biologically active and, thus, a source for use as medicinal value. The basic global issue before the agricultural scientist and world community is to evolve cultivars and develop methodologies for efficient use of inputs to enhance agricultural productivity. This is particularly true of the developing countries which are going to see maximum rise in population with changing food demands and declining availability of land. Amongst the inputs, nutrients play a crucial role. The major requirement is for N, P and K followed by several micro-nutrients. In this context reports of world-wide S deficiency in the agricultural systems are relevant. The reasons are many. Broadly speaking reduction inS emission, use of S-free N, P and K fertilizers and higher biomass production contributed the maximum. Despite the need for sulphur as an essential plant nutrient and the substantial returns expected from its use, very little attention has been given to fill the gap between supply and demand of S.
The association between plants and wind that first comes to mind might be plant damage from a strong wind such as a typhoon or monsoon. The winds this book will 1 discuss, however, are not this strong at all, but rather are only 2 m.s. or weaker, like a breeze that gently blows over a farming area. Such a breeze, in fact, instills vitality into plants and increases their growth rates. This book is an attempt to explain these beneficial effects on plants from a field perspective. One fundamental process necessary for plant growth is photosynthesis. Since it is a photochemical reaction, this synthesis has been studied with emphasis on light. Yet to shed light on dry-matter or carbohydrate production by plants, it is indispensable to pursue research not only into the mechanism of photosynthesis but also into photosynthetic production itself. I have observed various phenomena occurring in the production field, and have thereby realized it necessary to recognize photosynthesis as a phenomenon that carbon dioxide (C0 ) in the air diffuses into chloroplasts in the leaves, and to study 2 which environmental factors promote C0 diffusion into the leaves. 2 In this book, I am going to describe the effects of the natural environment on photosynthetic production, placing focus on the leaf boundary layer as an environmental factor for plant production."
The rapid advances in elucidating the biosynthesis and mode of action of the plant hormone ethylene, as well as its involvement in the regulation of the whole plant physiology, made imperative the organization of a series of dedicated conferences. This volume contains the main lectures and poster contributions presented at the 7th International Symposium on the Plant Hormone Ethylene held in Pisa in 2006.
Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices provides an overview of the recent photosystem II research and the systems available for the bioassay of pollutants using biosensors that are based on the photochemical activity. The data presented in this book serves as a basis for the development of a commercial biosensor for use in rapid pre-screening analyses of photosystem II pollutants, minimising costly and time-consuming laboratory analyses.
The plant' is often the most neglected part of plant-based medicine. Throughout time, humans have searched, collected, and effectively used plants for healing. Currently, the medicinal plant-based business is flourishing at a dramatic pace and at the expense of an already declining population of plant species, many of which are on the verge of extinction. In spite of this history and popularity, the mystery of what transforms a plant into a medicinal plant persists, and there are chronic problems with ensuring the safety and efficacy of medicinal plant products. Therefore, there is a real need for a full characterization of medicinal plant species and for the development and application of novel technologies for the production of plant-based medicines. This book highlights some of the recent advances and new approaches to the development of technologies for plant-based medicines and is intended to stimulate new discussions among researchers, regulatory authorities, and pharmaceutical organizations, leading to significant advancements in the field.
As atmospheric CO2 increases there will almost certainly be alterations in soil carbon fluxes. It is likely that such alterations will be accompanied by changes in the partitioning of carbon between organic structures and to soil processes. These changes have the potential for further altering the structure and function of terrestrial ecosystems. While there has been increasing recognition of the importance of soil-mediated responses to global climate change, the nature and magnitude of these responses are not well understood. In an effort to expand our assessment of the significance of belowground responses to rising atmospheric CO2, a workshop has been organized that resulted in the peer-reviewed contributions that are contained in this volume.
Procedures for plant tissue culture have been developing from ca. 1930 onwards and are now essential in many domains of science and teaching. The use of these techniques for plant propagation only began to emerge some 40 years later. The first edition of Plant Propagation by Tissue Culture by Edwin F. George appeared in 1986. A second edition consisting of two volumes appeared in 1993 and 1996. For researchers and students, George s books have become the standard works on in vitro plant propagation. These volumes also contain a wealth of information crucial for researchers and companies working in related areas; particularly plant breeding, genetic engineering, phytopathology, production of secondary metabolites and conservation. Scientific knowledge has expanded rapidly since the second edition and it would now be a daunting task for a single author to cover all aspects adequately. Therefore, in this third edition, topics are being covered by a number of specialists in the field. However, this edition still maintains the integration that was characteristic of the previous editions. The first volume of the new edition highlights the scientific background of in vitro propagation. The second volume, which is in preparation, will cover the practice of micropropagation and describe its various applications."
This is the first book describing in vitro cultivation of root organs. The text describes various biological aspects such as the physiology, biochemistry, biodiversity, and life cycles of fungi, as well as the effects of symbiosis on plant growth and development, including large-scale fungus production for biotechnological use. Detailed protocols allow the immediate application of the method to culture mycorrhizal fungi in vitro.
Studies on molecular biology of pathogens, infection process and disease resistance, have provided information essentially required to understand the vulnerable stages at which the pathogens can be tackled effectively and to adopt novel strategies to incorporate disease resistance genes from diverse sources and /or to induce resistance of cultivars with desirable agronomic attributes using biotic or abiotic agents. The nature of interaction between the gene products of the pathogen and plant appears to determine the outcome of the interaction resulting in either disease progression or suppression. Transgenic plants with engineered genes show promise for effective exploitation of this approach for practical application. Research efforts during the recent years to sequence the whole genomes of the pathogens and plants may lead to development of better ways of manipulating disease resistance mechanisms enabling the grower to achieve higher production levels and the consumer to enjoy safer food and agricultural products. Experimental protocols included in appropriate chapters will be useful for researchers and graduate students.
Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of desired resistance genes and incorporation of resistance gene(s) into cultivars and transformation of plants with selected gene(s) have been successfully performed by applying appropriate molecular techniques. Induction of resistance in susceptible cultivars by using biotic and abiotic inducers of resistance is a practical proposition for several crops whose resistance levels could not be improved by breeding or transformation procedures. The risks of emergence of pathogen strains less sensitive or resistant to chemicals have been reduced appreciably by rapid identification of resistant strains and monitoring the occurrence of such strains in different geographical locations.
This textbook covers Plant Ecology from the molecular to the global level. It covers the following areas in unprecedented breadth and depth: - Molecular ecophysiology (stress physiology: light,
temperature, oxygen deficiency, drought, salt, heavy metals,
xenobiotica and biotic stress factors) The book is carefully structured and well written: complex
issues are elegantly presented and easily understandable. It
contains more than 500 photographs and drawings, mostly in colour,
illustrating the fascinating subject.
Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.
In a convenient, single-source reference, this book examines plant growth substances and their relationship to a wide range of physiological processes, ranging from seed germination through the death of the plant. If offers a clear illustration of the pragmatic uses of plant substances in agriculture and demonstrates how basic laboratory research has translated into increased production and profit for the grower. This work begins by building a solid foundation in the subject, which contains historical aspects and fundamental concepts, and provides a methodology for extraction, purification, and quantification of plant growth substances. This forms the basis for understanding the ensuing chapters that explore the many processes involving plant growth substances, including: * seed germination * seedling growth * rooting * dormancy * juvenility * maturity * senescence * flowering * abscission * fruit set * fruit growth * fruit development * premature drop * ripening * promotion of fruit drop * tuberization * photsynthesis * weed control. Providing a detailed examination of plant growth substances and their relationships to specific physiological plant processes, Plant Growth Substances gives students, researchers, and professionals a much needed reference.
A state-of-the-art guide to recent developments in the understanding of plant response to abiotic stresses. Each chapter reflects how new techniques have helped physiologists, biochemists and molecular biologists to understand the basic problems of abiotic stress in plant species. The book supplies extensive bibliographies at the end of each chapter, as well as tables and figures that illustrate the research findings.
The book comprises the proceedings of the 7th International Wheat Conference, held in Mar del Plata, Argentina, at the end of 2005. Leading scientists from all over the world, specialized in different areas that contribute to the better understanding of wheat production and use, reviewed the present achievements and discussed the future challenges for the wheat crop. The latter are related to producing safe wheat grain in increasingly stressed environments, maintaining at the same time the sustainability of natural resources, in order to meet the needs of food for a growing population. Topics such as breeding for resistance to biotic and abiotic stresses, breeding for improved industrial and nutritional quality, crop and natural resources management, physiology of wheat production, biotechnology and cytogenetics, and conservation and management of genetic resources were covered during the Conference. Results of the extended use of molecular tools in different areas and their contribution to the faster achievement of breeding goals were presented. This book provides the scientific wheat community with the possibility of getting key contributions to that overall sight and an updated view of the main points of interest in those fields of research.
Plants utilize light not only for photosynthesis but also as environmental signals. They are capable of perceiving wavelength, intensity, direction, duration, and other attributes of light to perform appropriate physiological and developmental changes. This volume presents overviews of and the latest findings in many of the interconnected aspects of plant photomorphogenesis, including photoreceptors (phytochromes, cryptochromes, and phototropins), signal transduction, photoperiodism, and circadian rhythms, in 42 chapters. Also included, is a prologue by Prof. Masaki Furuya that gives an overview of the historical background. With contributions from preeminent researchers in specific subjects from around the world, this book will be a valuable source for a range of scientists from undergraduate to professional levels.
These papers include two lectures which address the role of Plant Nutrition in the sustainability of agro-ecosystems and the production of enough high quality food to feed the growing world population. Recent advances in Plant Nutrition are reviewed in the 11 papers presented in each of the Symposia devoted to: genetics and molecular biology of Plant Nutrition, nutrient functions, the role of the apoplast in mineral nutrition, plant quality and plant health, salinity and plant-soil-water relations, mineral element toxicity and resistance nutrient acquisition, soil organisms/plant interactions, fertiliser use in relation to optimum yield and environment, nutrient dynamics in natural and agro-ecosystems, and plant nutrition and sustainable development. Current knowledge and research emphasis in these areas of the subject is well illustrated and the reader is provided with a comprehensive view of the state of Plant Nutrition research.
Biological nitrogen fixation (BNF) has become important in rice farming systems because this process diminishes the need for expensive chemical fertilizers which have been associated with numerous health and environmental problems. The extensive exploitation of BNF would provide economic benefits to small farmers, avoiding all malign influences of chemical fertilizers. Meanwhile, advances in biotechnology have brought rice genetics to the threshold of new opportunities for increasing rice production. This volume focuses, in six different sessions, on the role of BNF in the improvement of rice production in the light of the current state of the art of BNF technology transfer and diffusion. New ideas on BNF technology in research, extension information and inoculant technology are also included, together with the socio-economic impacts of using BNF in rice farm systems.
Since the beginning of agricultural production, there has been a continuous effort to grow more and better quality food to feed ever increasing popula tions. Both improved cultural practices and improved crop plants have alIowed us to divert more human resources to non-agricultural activities while still increasing agricultural production. Malthusian population predictions continue to alarm agricultural researchers, especially plant breeders, to seek new technologies that will continue to allow us to produce more and better food by fewer people on less land. Both improvement of existing cultivars and development of new high-yielding cultivars are common goals for breeders of alI crops. In vitro haploid production is among the new technologies that show great promise toward the goal of increasing crop yields by making similar germplasm available for many crops that was used to implement one of the greatest plant breeding success stories of this century, i. e., the development of hybrid maize by crosses of inbred lines. One of the main applications of anther culture has been to produce diploid homozygous pure lines in a single generation, thus saving many generations of backcrossing to reach homozygosity by traditional means or in crops where self-pollination is not possible. Because doubled haploids are equivalent to inbred lines, their value has been appreciated by plant breeders for decades. The search for natural haploids and methods to induce them has been ongoing since the beginning of the 20th century."
There are many good books in the market dealing with the subject of allelopathy. When we designed the outline of this new book, we thought that it should include as many different points of view as possible, although in an integrated general scheme. Allelopathy can be viewed from different of perspectives, ranging from the molecular to the ecosystem level, and including molecular biology, plant biochemistry, plant physiology, plant ecophysiology and ecology, with information coming also from the organic chemistry, soil sciences, microbiology and many other scientific disciplines. This book was designed to include a complete perspective of allelopathic process. The book is divided into seven major sections. The first chapter explores the international development of allelopathy as a science and next section deals with methodological aspects and it explores potential limitations of actual research. Third section is devoted to physiological aspects of allelopathy. Different specialists wrote about photosynthesis, cell cycle, detoxification processes, abiotic and biotic stress, plant secondary metabolites and respiration related to allelopathy. Chapters 13 through 16 are collectively devoted to various aspects of plant ecophysiology on a variety of levels: microorganisms, soil system and weed germination. Fundamental ecology approaches using both experimental observations and theoretical analysis of allelopathy are described in chapters 16 and 17. Those chapters deal with the possible evolutionary forces that have shaped particular strategies. In the section named "allelopathy in different environments", authors primarily center on marine, aquatic, forest and agro ecosystems. Last section includes chapters addressing application of the knowledge of allelopathy.
Like genomics, which defines genes in a genome irrespective of functionality, metabolomics profiles all metabolites in a biological sample irrespective of the chemical and physical properties of these molecules. Metabolomics can potentially define cellular processes by providing a measure of the ultimate phenotype of an organism, characterized by the collage of small molecules whose levels of accumulation is altered in response to genetic and environmentally induced changes in gene expression.
This edited book is focused on antioxidant compounds and their biosynthesis, up-regulation, mechanism of action for selective bioactivity, targeted role and the advancement of their bioactive potential during plant-microbe interaction and other stress conditions. This book also emphasizes on the role of antioxidants in recruiting beneficial microbes in plant surroundings. Antioxidants have multiple biological roles in plants especially in the signalling pathway. These compounds are secondary metabolites produced besides the primary biosynthetic pathway and are associated with growth and development. Besides they also have special role to play during oxidative stress produced via abiotic stimulants or pathogen attack. This understanding of the biosynthesis, signaling and function of antioxidant compounds in plants during stress condition is helpful in restoring plant ecosystem productivity and improve plant responses to a wide range of stress conditions. This book is a useful compilation for researchers and academicians in botany, plant physiology, plant biochemistry and stress physiology. Also the book serves as reading material for undergraduate and graduate students of environmental sciences, agricultural sciences and other plant science courses. |
You may like...
|