![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This book presents a graduate-level course on modern algebra. It can be used as a teaching book - owing to the copious exercises - and as a source book for those who wish to use the major theorems of algebra. The course begins with the basic combinatorial principles of algebra: posets, chain conditions, Galois connections, and dependence theories. Here, the general Jordan-Holder Theorem becomes a theorem on interval measures of certain lower semilattices. This is followed by basic courses on groups, rings and modules; the arithmetic of integral domains; fields; the categorical point of view; and tensor products. Beginning with introductory concepts and examples, each chapter proceeds gradually towards its more complex theorems. Proofs progress step-by-step from first principles. Many interesting results reside in the exercises, for example, the proof that ideals in a Dedekind domain are generated by at most two elements. The emphasis throughout is on real understanding as opposed to memorizing a catechism and so some chapters offer curiosity-driven appendices for the self-motivated student.
The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field.
Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area.
Although the study of dynamical systems is mainly concerned with single trans formations and one-parameter flows (i. e. with actions of Z, N, JR, or JR+), er godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. A remarkable exception is provided by a class of geometric actions of (discrete subgroups of) semi-simple Lie groups, which have led to the discovery of one of the most striking new phenomena in multi-dimensional ergodic theory: under suitable circumstances orbit equivalence of such actions implies not only measurable conjugacy, but the conjugating map itself has to be extremely well behaved. Some of these rigidity properties are inherited by certain abelian subgroups of these groups, but the very special nature of the actions involved does not allow any general conjectures about actions of multi-dimensional abelian groups. Beyond commuting group rotations, commuting toral automorphisms and certain other algebraic examples (cf. [39]) it is quite difficult to find non-trivial smooth Zd-actions on finite-dimensional manifolds. In addition to scarcity, these examples give rise to actions with zero entropy, since smooth Zd-actions with positive entropy cannot exist on finite-dimensional, connected manifolds. Cellular automata (i. e.
Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the Poincare-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his "Clifford algebra analogue" of the Hopf-Koszul-Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. "
This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on etale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.
'Et moi, ..., si j'avait Sll comment en revemr, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
After Pyatetski-Shapiro [PSI] and Satake [Sal] introduced, independent of one another, an early form of the Jacobi Theory in 1969 (while not naming it as such), this theory was given a definite push by the book The Theory of Jacobi Forms by Eichler and Zagier in 1985. Now, there are some overview articles describing the developments in the theory of the Jacobi group and its automor- phic forms, for instance by Skoruppa [Sk2], Berndt [Be5] and Kohnen [Ko]. We refer to these for more historical details and many more names of authors active in this theory, which stretches now from number theory and algebraic geometry to theoretical physics. But let us only briefly indicate several - sometimes very closely related - topics touched by Jacobi theory as we see it: * fields of meromorphic and rational functions on the universal elliptic curve resp. universal abelian variety * structure and projective embeddings of certain algebraic varieties and homogeneous spaces * correspondences between different kinds of modular forms * L-functions associated to different kinds of modular forms and autom- phic representations * induced representations * invariant differential operators * structure of Hecke algebras * determination of generalized Kac-Moody algebras and as a final goal related to the here first mentioned * mixed Shimura varieties and mixed motives.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
The Bialowieza workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931-1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanislaw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today's perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanislaw Lech Woronowicz. Mielnik's geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz' fruitful notion of a compact quantum group and related topics are also addressed.
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. "Spectra of Graphs" is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included."
This self-contained text is an excellent introduction to Lie groups and their actions on manifolds. The authors start with an elementary discussion of matrix groups, followed by chapters devoted to the basic structure and representation theory of finite dimensinal Lie algebras. They then turn to global issues, demonstrating the key issue of the interplay between differential geometry and Lie theory. Special emphasis is placed on homogeneous spaces and invariant geometric structures. The last section of the book is dedicated to the structure theory of Lie groups. Particularly, they focus on maximal compact subgroups, dense subgroups, complex structures, and linearity. This text is accessible to a broad range of mathematicians and graduate students; it will be useful both as a graduate textbook and as a research reference.
Relational Communication: An Interactional Perspective to the Study of Process and Form brings together in one volume a full treatment of the relational communication perspective on the study of relationships. This perspective takes to heart the formative nature of communication by focusing on the codefined patterns of interaction by which members jointly create their relationship. This book provides a strong theoretical foundation to the research approach and also offers a step-by-step guide for carrying out the research procedures. It is a complete guide for the beginner or experienced researcher. The contributed chapters are written by researchers from psychology, clinical psychology, marital and family therapy, as well as marital, health, and organizational communication. Several of the studies on marital interaction are based on both American and Spanish research samples, offering a cross-disciplinary and cross-cultural application of the perspective. Part I opens with a discussion of the theoretical foundation and epistemological grounding of the perspective and then moves on to the observational research methods involved in applying the perspective's interactional approach. Part II presents a set of programmatic research exemplars that describe the application of the relational communication approach in different relational contexts, from marital to organizational settings. Part III offers a reflective overview of the research perspective. This book is appropriate for advanced undergraduate and graduate students, scholars, and researchers in communication. It will also be of interest to professionals, students, teachers and researchers in the fields of marital relations and family study, social and clinical psychology, family therapy, social work, and marital and family counseling programs.
Boundary value problems which have variational expressions in form of inequal ities can be divided into two main classes. The class of boundary value prob lems (BVPs) leading to variational inequalities and the class of BVPs leading to hemivariational inequalities. The first class is related to convex energy functions and has being studied over the last forty years and the second class is related to nonconvex energy functions and has a shorter research "life" beginning with the works of the second author of the present book in the year 1981. Nevertheless a variety of important results have been produced within the framework of the theory of hemivariational inequalities and their numerical treatment, both in Mathematics and in Applied Sciences, especially in Engineering. It is worth noting that inequality problems, i. e. BVPs leading to variational or to hemivariational inequalities, have within a very short time had a remarkable and precipitate development in both Pure and Applied Mathematics, as well as in Mechanics and the Engineering Sciences, largely because of the possibility of applying and further developing new and efficient mathematical methods in this field, taken generally from convex and/or nonconvex Nonsmooth Analy sis. The evolution of these areas of Mathematics has facilitated the solution of many open questions in Applied Sciences generally, and also allowed the formu lation and the definitive mathematical and numerical study of new classes of interesting problems."
The impact and influence of J.-P. Serres work have been notable ever since his doctoral thesis on homotopy groups. The abundance of findings and deep insights found in his research and survey papers ranging from topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serres publications are the many open questions he formulates pointing to further directions for research. In four volumes of Collected Papers he has provided comments on and corrections to most articles, and described the current status of the open questions with reference to later findings. In this softcover edition of volume IV, two recently published articles have been added, one on the life and works of Andre Weil, the other one on Finite Subgroups of Lie Groups. "From the reviews: " "This is the fourth volume of J-P. Serre's "Collected Papers" covering the period 1985-1998. Items, numbered 133-173, contain "the essence'' of his work from that period and are devoted to number theory, algebraic geometry, and group theory. Half of them are articles and another half are summaries of his courses in those years and letters. Most courses have never been previously published, nor proofs of the announced results. The letters reproduced, however (in particular to K. Ribet and M.-F. Vigneras), provide indications of some of those proofs. Also included is an interview with J-P. Serre from 1986, revealing his views on mathematics (with the stress upon its integrity) and his own mathematical activity. The volume ends with Notes which complete the text by reporting recent progress and occasionally correct it. "Zentralblatt MATH" "
This book provides an upto date information on metric, connection and curva ture symmetries used in geometry and physics. More specifically, we present the characterizations and classifications of Riemannian and Lorentzian manifolds (in particular, the spacetimes of general relativity) admitting metric (i.e., Killing, ho mothetic and conformal), connection (i.e., affine conformal and projective) and curvature symmetries. Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of a comprehensive collection of the works of a very large number of researchers on all the above mentioned symmetries. (b) We have aimed at bringing together the researchers interested in differential geometry and the mathematical physics of general relativity by giving an invariant as well as the index form of the main formulas and results. (c) Attempt has been made to support several main mathematical results by citing physical example(s) as applied to general relativity. (d) Overall the presentation is self contained, fairly accessible and in some special cases supported by an extensive list of cited references. (e) The material covered should stimulate future research on symmetries. Chapters 1 and 2 contain most of the prerequisites for reading the rest of the book. We present the language of semi-Euclidean spaces, manifolds, their tensor calculus; geometry of null curves, non-degenerate and degenerate (light like) hypersurfaces. All this is described in invariant as well as the index form.
Never before in the history of mathematics has there been an individual theorem whose proof has required 10,000 journal pages of closely reasoned argument. Who could read such a proof, let alone communicate it to others? But the classification of all finite simple groups is such a theorem-its complete proof, developed over a 30-year period by about 100 group theorists, is the union of some 500 journal articles covering approximately 10,000 printed pages. How then is one who has lived through it all to convey the richness and variety of this monumental achievement? Yet such an attempt must be made, for without the existence of a coherent exposition of the total proof, there is a very real danger that it will gradually become lost to the living world of mathematics, buried within the dusty pages of forgotten journals. For it is almost impossible for the uninitiated to find the way through the tangled proof without an experienced guide; even the 500 papers themselves require careful selection from among some 2,000 articles on simple group theory, which together include often attractive byways, but which serve only to delay the journey.
Special relativity and quantum mechanics are likely to remain the two most important languages in physics for many years to come. The underlying language for both disciplines is group theory. Eugene P. Wigner's 1939 paper on the Unitary Representations of the Inhomogeneous Lorentz Group laid the foundation for unifying the concepts and algorithms of quantum mechanics and special relativity. In view of the strong current interest in the space-time symmetries of elementary particles, it is safe to say that Wigner's 1939 paper was fifty years ahead of its time. This edited volume consists of Wigner's 1939 paper and the major papers on the Lorentz group published since 1939. . This volume is intended for graduate and advanced undergraduate students in physics and mathematics, as well as mature physicists wishing to understand the more fundamental aspects of physics than are available from the fashion-oriented theoretical models which come and go. The original papers contained in this volume are useful as supplementary reading material for students in courses on group theory, relativistic quantum mechanics and quantum field theory, relativistic electrodynamics, general relativity, and elementary particle physics. This reprint collection is an extension of the textbook by the present editors entitled "Theory and Applications of the Poincare Group." Since this book is largely based on the articles contained herein, the present volume should be viewed as a reading for the previous work. continuation of and supplementary We would like to thank Professors J. Bjorken, R. Feynman, R. Hofstadter, J.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the human race. It has put common sense back je n'y serais point aile.' where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One seIVice topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'j tre of this series."
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results. Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended. |
![]() ![]() You may like...
An Introduction to Optimal Control…
Sebastian Anita, Viorel Arnautu, …
Hardcover
R1,660
Discovery Miles 16 600
New Approaches in Management of Smart…
Lucia Knapcikova, Michal Balog, …
Hardcover
R3,909
Discovery Miles 39 090
Business Mathematics With Statistics
Dexter J Booth, John K. Turner
Paperback
Misunderstanding Addiction - Overcoming…
Micheal M. Pop M.ED.
Hardcover
Cyber Security and Safety of Nuclear…
Michael A. Yastrebenetsky, Vyacheslav S. Kharchenko
Hardcover
R5,834
Discovery Miles 58 340
The Effect of Delay and of Intervening…
Michael L. Commons, James E. Mazur, …
Hardcover
R4,498
Discovery Miles 44 980
|