![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure the Schrodinger-Virasoro algebra. Just as Poincare invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrodinger operators."
In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.
Liste des participants et des conferences Table des matieres BAER R. Kollineationen primaerer Praemoduln [1] 1 [2] BAER R. Dualisierbare I!oduln und Praemoduln 37 [3] BEAtJ:IOllT R.A. Abelian groups Gwhich satisty G :: G EPK for every direct summand K of G 69 Sous-groupes fonctoriels et topologies [4J CHARLES B. 75 CUTLER D.O. A topology for primary abelian groups 93 [5J [6] FALTINGS K. Automorphismengruppen endlicher abelscher p-gruppen. 101 [7] FUCHS L. Note on purity and algebraic compactness for modules 121 [8] GP.ABE P.J. Der iterierte Ext-Funktor, seine Periodicitat und die dadurch definierten Klassen abelscher Gruppen ** 131 The Jacobson radieal of seme endomorphism rings 143 HAIlW F. [9J HAUSEr, J. Autemorphismengesattigte Klassen abzahlbarer [1OJ abelschen Gruppen ******************************** 147 [llJ HILL P. and;mGIBBElI C. Direct sums of countable bToups and gene- lizations **************************************** 183 ImIDI J.J.!. On topologie al methods in abclian groups 207 [12J KOLETTIS G. Homogeneous decomposable modules 223 [13] 'Endemorphism rings of abelian p-groups LIEBERT 11. 239 [14J l*lADER A. Extensions of abelian groups 259 [15J Sur les proprietes universelles des foncteurs HARlU.DA J. [i6J adjoints ******************.********************.* 267 J.lARTY R. Radieal, soele et relativisation 287 [17] Torsion and cotorsion campletions **************** [18] llIUES R. 301 A note on endanorphism rings of abelian p-groups 305 [19J m.ITUCE R.
Only book on Hopf algebras aimed at advanced undergraduates
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan, and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups, and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume I collects the papers written from 1948 to 1958.
From the Preface by V. S. VARADARAJAN: "These volumes of the Collected Papers of Harish-Chandra are being brought out in response to a widespread feeling in the mathematical community that they would immensely benefit scholars and research workers, especially those in analysis, representation theory, arithmetic, mathematical physics, and other related areas. lt is hoped that in addition to making his contributions more accessible by collecting them in one place, these volumes would help focus renewed attention on his ideas and methods as well as lend additional perspective to them." The papers are arranged chronologically, Volume III collects his articles written between 1959 and 1968.
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results. Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin-Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry.
Growth of groups is an innovative new branch of group theory. This is the first book to introduce the subject from scratch. It begins with basic definitions and culminates in the seminal results of Gromov and Grigorchuk and more. The proof of Gromov's theorem on groups of polynomial growth is given in full, with the theory of asymptotic cones developed on the way. Grigorchuk's first and general groups are described, as well as the proof that they have intermediate growth, with explicit bounds, and their relationship to automorphisms of regular trees and finite automata. Also discussed are generating functions, groups of polynomial growth of low degrees, infinitely generated groups of local polynomial growth, the relation of intermediate growth to amenability and residual finiteness, and conjugacy class growth. This book is valuable reading for researchers, from graduate students onward, working in contemporary group theory.
Armand Borel's mathematical work centered on the theory of Lie groups. Because of the increasingly important place of this theory in the whole of mathematics, Borel's work influenced some of the most important developments of contemporary mathematics. His first great achievement was to apply to Lie groups and homogenous spaces the powerful techniques of algebraic topology developed by Leray, Cartan and Steenrod. In 1992, Borel was awarded the International Balzan Prize for Mathematics "for his fundamental contributions to the theory of Lie groups, algebraic groups and arithmetic groups and for his indefatigable action in favor of high quality in mathematical research and of the propagation of new ideas." He wrote more than 145 articles before 1982, which were collected in three volumes published in 1983. A fourth volume of subsequent articles was published in 2001. Volume III collects the papers written from 1969 to 1982.
From the Preface by V. S. VARADARAJAN: "These volumes of the Collected Papers of Harish-Chandra are being brought out in response to a widespread feeling in the mathematical community that they would immensely benefit scholars and research workers, especially those in analysis, representation theory, arithmetic, mathematical physics, and other related areas. lt is hoped that in addition to making his contributions more accessible by collecting them in one place, these volumes would help focus renewed attention on his ideas and methods as well as lend additional perspective to them." The papers are arranged chronologically, Volume I collects Harish-Chandra's articles written between 1944 and 1954.
The Bialowieza workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931-1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanislaw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today's perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanislaw Lech Woronowicz. Mielnik's geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz' fruitful notion of a compact quantum group and related topics are also addressed.
The present volume contains the transactions of the lOth Oberwolfach Conference on "Probability Measures on Groups." The series of these meetings inaugurated in 1970 by L. Schmetterer and the editor is devoted to an intensive exchange of ideas on a subject which developed from the relations between various topics of mathematics: measure theory, probability theory, group theory, harmonic analysis, special functions, partial differential operators, quantum stochastics, just to name the most significant ones. Over the years the fruitful interplay broadened in various directions: new group-related structures such as convolution algebras, generalized translation spaces, hypercomplex systems, and hypergroups arose from generalizations as well as from applications, and a gradual refinement of the combinatorial, Banach-algebraic and Fourier analytic methods led to more precise insights into the theory. In a period of highest specialization in scientific thought the separated minds should be reunited by actively emphasizing similarities, analogies and coincidences between ideas in their fields of research. Although there is no real separation between one field and another - David Hilbert denied even the existence of any difference between pure and applied mathematics - bridges between probability theory on one side and algebra, topology and geometry on the other side remain absolutely necessary. They provide a favorable ground for the communication between apparently disjoint research groups and motivate the framework of what is nowadays called "Structural probability theory."
This volume contains papers which, for the most part, are based on talks given at an international conference on Lattices, Semigroups, and Universal Algebra that was held in Lisbon, Portugal during the week of June 20-24, 1988. The conference was dedicated to the memory of Professor Antonio Almeida Costa, a Portuguese mathematician who greatly contributed to the development of th algebra in Portugal, on the 10 anniversary of his death. The themes of the conference reflect some of his research interests and those of his students. The purpose of the conference was to gather leading experts in Lattices, Semigroups, and Universal Algebra and to promote a discussion of recent developments and trends in these areas. All three fields have grown rapidly during the last few decades with varying degrees of interaction. Lattice theory and Universal Algebra have historically evolved alongside with a large overlap between the groups of researchers in the two fields. More recently, techniques and ideas of these theories have been used extensively in the theory of semigroups. Conversely, some developments in that area may inspire further developments in Universal Algebra. On the other hand, techniques of semi group theory have naturally been employed in the study of semilattices. Several papers in this volume elaborate on these interactions.
Groups St Andrews 2009 was held in the University of Bath in August 2009 and this first volume of a two-volume book contains selected papers from the international conference. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the proceedings. This volume contains the contributions by Gerhard Hiss (RWTH Aachen) and Volodymyr Nekrashevych (Texas A&M). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 30 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
Groups St Andrews 2009 was held in the University of Bath in August 2009 and this second volume of a two-volume book contains selected papers from the international conference. Five main lecture courses were given at the conference, and articles based on their lectures form a substantial part of the proceedings. This volume contains the contributions by Eammon O'Brien (Auckland), Mark Sapir (Vanderbilt) and Dan Segal (Oxford). Apart from the main speakers, refereed survey and research articles were contributed by other conference participants. Arranged in alphabetical order, these articles cover a wide spectrum of modern group theory. The regular proceedings of Groups St Andrews conferences have provided snapshots of the state of research in group theory throughout the past 30 years. Earlier volumes have had a major impact on the development of group theory and it is anticipated that this volume will be equally important.
Because of the correspondences existing among all levels of reality, truths pertaining to a lower level can be considered as symbols of truths at a higher level and can therefore be the "foundation" or support leading by analogy to a knowledge of the latter. This confers to every science a superior or "elevating" meaning, far deeper than its own original one. - R. GUENON, The Crisis of Modern World Having been interested in the Kepler Problem for a long time, I have al ways found it astonishing that no book has been written yet that would address all aspects of the problem. Besides hundreds of articles, at least three books (to my knowledge) have indeed been published al ready on the subject, namely Englefield (1972), Stiefel & Scheifele (1971) and Guillemin & Sternberg (1990). Each of these three books deals only with one or another aspect of the problem, though. For example, En glefield (1972) treats only the quantum aspects, and that in a local way. Similarly, Stiefel & Scheifele (1971) only considers the linearization of the equations of motion with application to the perturbations of celes tial mechanics. Finally, Guillemin & Sternberg (1990) is devoted to the group theoretical and geometrical structure."
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the College de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.
For years I have heard about buildings and their applications to group theory. I finally decided to try to learn something about the subject by teaching a graduate course on it at Cornell University in Spring 1987. This book is based on the not es from that course. The course started from scratch and proceeded at a leisurely pace. The book therefore does not get very far. Indeed, the definition of the term "building" doesn't even appear until Chapter IV. My hope, however, is that the book gets far enough to enable the reader to tadle the literat ure on buildings, some of which can seem very forbidding. Most of the results in this book are due to J. Tits, who originated the the ory of buildings. The main exceptions are Chapter I (which presents some classical material), Chapter VI (which prcsents joint work of F. Bruhat and Tits), and Chapter VII (which surveys some applications, due to var ious people). It has been a pleasure studying Tits's work; I only hope my exposition does it justice.
Relational Communication: An Interactional Perspective to the Study of Process and Form brings together in one volume a full treatment of the relational communication perspective on the study of relationships. This perspective takes to heart the formative nature of communication by focusing on the codefined patterns of interaction by which members jointly create their relationship. This book provides a strong theoretical foundation to the research approach and also offers a step-by-step guide for carrying out the research procedures. It is a complete guide for the beginner or experienced researcher. The contributed chapters are written by researchers from psychology, clinical psychology, marital and family therapy, as well as marital, health, and organizational communication. Several of the studies on marital interaction are based on both American and Spanish research samples, offering a cross-disciplinary and cross-cultural application of the perspective. Part I opens with a discussion of the theoretical foundation and epistemological grounding of the perspective and then moves on to the observational research methods involved in applying the perspective's interactional approach. Part II presents a set of programmatic research exemplars that describe the application of the relational communication approach in different relational contexts, from marital to organizational settings. Part III offers a reflective overview of the research perspective. This book is appropriate for advanced undergraduate and graduate students, scholars, and researchers in communication. It will also be of interest to professionals, students, teachers and researchers in the fields of marital relations and family study, social and clinical psychology, family therapy, social work, and marital and family counseling programs.
This is an advanced text and research monograph on groups acting on low-dimensional toplogical spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Here the treatment includes several of the standard results on groups acting on trees, as well as many original results on ends of groups and Boolean rings of graphs. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main Three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts normally found in one-year courses on homological algebra and algebraic topology.
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
This volume is the collection of papers dedicated to Yozo Matsushima on his 60th birthday, which took place on February 11, 1980. A conference in Geometry in honor of Professor Matsushima was held at the University of Notre Dame on May 14 and 15, 1980. Some of the papers in this volume were delivered on this occasion. 0 00 0\ - 15 S. Kobayashi, University 27 R. Ogawa, Loyola 42 P. Ryan, Indiana 1 W. Stoll 2 W. Kaup, University of of California at Berkeley University (Chicago) University at South Bend Tubing en 16 B. Y. Chen, 28 A. Howard 43 M. Kuga, SUNY at 3 G. Shimura, Michigan State University 29 D. Blair, Stony Brook Princeton University 17 G. Ludden, Michigan State University 44 W. Higgins 30 B. Smyth 4 A. Borel, Institute for Michigan State University 45 J. Curry Advanced Study 18 S. Harris, 31 A. Pradhan 46 D. Norris 32 R. Escobales, 5 Y. Matsushima University of Missouri 47 J. Spellecy Canisius College 6 Mrs. Matsushima 19 J. Beem, 48 M. Clancy 7 K. Nomizu, University of Missouri 33 L. Smiley 49 J. Rabinowitz, University 20 D. Collins, 34 C. H. Sung Brown University of Illinois at Chicago Valparaiso University 35 M. Markowitz 8 J. -1. Hano, 50 R. Richardson, Australian Washington University 36 A. Sommese 21 I. Satake, University of National University California at Berkeley 37 A. Vitter, 9 J. Carrell, University of 51 D. Lieberman, 22 H.
A study of the functional analytic properties of Weyl transforms as bounded linear operators on $ L2u(aBbb Runu) $ in terms of the symbols of the transforms. Further, the boundedness, the compactness, the spectrum and the functional calculus of the Weyl transform are proved in detail, while new results and techniques on the boundedness and compactness of the Weyl transforms in terms of the symbols in $ Lru(aBbb Ru2nu) $ and in terms of the Wigner transforms of Hermite functions are given. The roles of the Heisenberg group and the symplectic group in the study of the structure of the Weyl transform are explained, and the connections of the Weyl transform with quantization are highlighted throughout the book. Localisation operators, first studied as filters in signal analysis, are shown to be Weyl transforms with symbols expressed in terms of the admissible wavelets of the localisation operators. The results and methods mean this book is of interest to graduates and mathematicians working in Fourier analysis, operator theory, pseudo-differential operators and mathematical physics.
By a linear group we mean essentially a group of invertible matrices with entries in some commutative field. A phenomenon of the last twenty years or so has been the increasing use of properties of infinite linear groups in the theory of (abstract) groups, although the story of infinite linear groups as such goes back to the early years of this century with the work of Burnside and Schur particularly. Infinite linear groups arise in group theory in a number of contexts. One of the most common is via the automorphism groups of certain types of abelian groups, such as free abelian groups of finite rank, torsion-free abelian groups of finite rank and divisible abelian p-groups of finite rank. Following pioneering work of Mal'cev many authors have studied soluble groups satisfying various rank restrictions and their automor phism groups in this way, and properties of infinite linear groups now play the central role in the theory of these groups. It has recently been realized that the automorphism groups of certain finitely generated soluble (in particular finitely generated metabelian) groups contain significant factors isomorphic to groups of automorphisms of finitely generated modules over certain commutative Noetherian rings. The results of our Chapter 13, which studies such groups of automorphisms, can be used to give much information here." |
You may like...
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
|