![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
Ethnocentrism works to reinvigorate the study of ethnocentrism by reconceptualising ethnocentrism as a social, psychological, and attitudinal construct. Using a broad, multidisciplinary approach to ethnocentrism, the book integrates literature from disciplines such as psychology, political science, sociology, anthropology, biology, and marketing studies to create a novel reorganisation of the existing literature, its origins, and its outcomes. Empirical research throughout serves to comprehensively measure the six dimensions of ethnocentrism-devotion, group cohesion, preference, superiority, purity, and exploitativeness-and show how they factor into causes and consequences of ethnocentrism, including personality, values, morality, demographics, political ideology, social factors, prejudice, discrimination, and nationalism. Ethnocentrism is fascinating reading for scholars, researchers, and students in psychology, sociology, and political science.
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincare upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vigneras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincare upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups , tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.
The Body in the Group has been structured around the formation of a group analytic concept of sexuality, using the archaeology of Michel Foucault to move away from psychoanalytic theory, with its association to heteronormativity and pathology, on which group analysis has historically relied. The failure of group analysis to have its own theory of sexuality is, in fact, its greatest potential. It is a psychosocial theory that is able to contain failure in language and gaps in discourse, and, furthermore, can mobilise its creative potential in relation to the discourse of sexuality. Furthermore, using queer theory enables the failure of the term 'homosexual' by disrupting its association to heteronormativity and psychopathology that traditional psychoanalysis has emphasised. The potential of the group analytic matrix to disrupt and change discourse by conceiving of it using figurations and their associated political radicalism within language and discourse permits a radical conception of space and time. Bi-logic removes the potentially unhelpful competitive splits in power associated with the politics of sexuality and gender and, by doing so, enables multiple and contradictory positions of sexuality and gender to be held simultaneously. In addition, group analysis radically alters typical notions of ethics by being able to conceive of a psychosocial form of ethics. Likewise, queer theory raises an awareness for group analysis of the potential violence of its textual representation. Finally, analytic groups are 'figurations in action' when terms such as group polyphony, embodiment, discursive gaps, and norms (or no-norms) are mobilised alongside spatio-temporality and bi-logic. The group analytic literature so far has delimited sexuality and gender by over-reliance on psychoanalysis. Daniel Anderson, by utilising group analytic theory alongside the archaeology of Foucault and feminist, queer and education theory, has created an exciting and innovative way of working with sexuality in a group analysis setting.
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
This book is an indispensable source for anyone with an interest in semigroup theory or whose research overlaps with this increasingly important area of mathematics. It is a clear and readable introduction to the subject, with emphasis on various classes of regular and semigroups. More than 150 exercises, accompanied by relevant references to the literature,give pointerse to areas of the subject not explicitly covered in the text.
This is an introduction to the mathematics behind the phrase "quantum Lie algebra". The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary "quantum" Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin Lie algebras; and Shestakov--Umirbaev operations for the Lie theory of nonassociative products. Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.
Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.
This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.
We present an introduction to Berkovich's theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to etale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Remy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.
This detailed yet accessible text provides an essential introduction to the advanced mathematical methods at the core of theoretical physics. The book steadily develops the key concepts required for an understanding of symmetry principles and topological structures, such as group theory, differentiable manifolds, Riemannian geometry, and Lie algebras. Based on a course for senior undergraduate students of physics, it is written in a clear, pedagogical style and would also be valuable to students in other areas of science and engineering. The material has been subject to more than twenty years of feedback from students, ensuring that explanations and examples are lucid and considered, and numerous worked examples and exercises reinforce key concepts and further strengthen readers' understanding. This text unites a wide variety of important topics that are often scattered across different books, and provides a solid platform for more specialized study or research.
This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear groups. The presentation is self-contained and accessible to anyone with a graduate-level mathematical background. In particular, no specific knowledge of logic or model theory is required. The monograph also contains many exercises, to help familiarize the reader with the topics present.
This book presents a graduate-level course on modern algebra. It can be used as a teaching book - owing to the copious exercises - and as a source book for those who wish to use the major theorems of algebra. The course begins with the basic combinatorial principles of algebra: posets, chain conditions, Galois connections, and dependence theories. Here, the general Jordan-Holder Theorem becomes a theorem on interval measures of certain lower semilattices. This is followed by basic courses on groups, rings and modules; the arithmetic of integral domains; fields; the categorical point of view; and tensor products. Beginning with introductory concepts and examples, each chapter proceeds gradually towards its more complex theorems. Proofs progress step-by-step from first principles. Many interesting results reside in the exercises, for example, the proof that ideals in a Dedekind domain are generated by at most two elements. The emphasis throughout is on real understanding as opposed to memorizing a catechism and so some chapters offer curiosity-driven appendices for the self-motivated student.
This two-volume graduate textbook gives a comprehensive, state-of-the-art account of describing large subgroups of the unit group of the integral group ring of a finite group and, more generally, of the unit group of an order in a finite dimensional semisimple rational algebra. Since the book is addressed to graduate students as well as young researchers, all required background on these diverse areas, both old and new, is included. Supporting problems illustrate the results and complete some of the proofs. Volume 1 contains all the details on describing generic constructions of units and the subgroup they generate. Volume 2 mainly is about structure theorems and geometric methods. Without being encyclopaedic, all main results and techniques used to achieve these results are included. Basic courses in group theory, ring theory and field theory are assumed as background.
The Bialowieza workshops on Geometric Methods in Physics, taking place in the unique environment of the Bialowieza natural forest in Poland, are among the important meetings in the field. Every year some 80 to 100 participants both from mathematics and physics join to discuss new developments and to interchange ideas. The current volume was produced on the occasion of the XXXI meeting in 2012. For the first time the workshop was followed by a School on Geometry and Physics, which consisted of advanced lectures for graduate students and young researchers. Selected speakers of the workshop were asked to contribute, and additional review articles were added. The selection shows that despite its now long tradition the workshop remains always at the cutting edge of ongoing research. The XXXI workshop had as a special topic the works of the late Boris Vasilievich Fedosov (1938-2011) who is best known for a simple and very natural construction of a deformation quantization for any symplectic manifold, and for his contributions to index theory.
Let $p$ be a prime and$S$ a finite $p$-group. A $p$-fusion system on $S$ is a category whose objects are the subgroups of $S$ and whose morphisms are certain injective group homomorphisms. Fusion systems are of interest in modular representation theory, algebraic topology, and local finite group theory. The book provides a characterization of the 2-fusion systems of the groups of Lie type and odd characteristic, a result analogous to the Classical Involution Theorem for groups. The theorem is the most difficult step in a two-part program. The first part of the program aims to determine a large subclass of the class of simple 2-fusion systems, while part two seeks to use the result on fusion systems to simplify the proof of the theorem classifying the finite simple groups.
A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized. --- The book is extremely interesting, stimulating and well written (...) and it is strongly recommended to graduate students and researchers in the fields of geometry, group theory, harmonic analysis, ergodic theory and operator algebras. The first chapter, by Valette, is a stimulating introduction to the whole book. (Mathematical Reviews) This book constitutes a collective volume due to five authors, featuring important breakthroughs in an intensively studied subject. (Zentralblatt MATH)
This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples' Friendship University of Russia in Moscow on August 22-27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.
Starting from an undergraduate level, this book systematically develops the basics of * Calculus on manifolds, vector bundles, vector fields and differential forms, * Lie groups and Lie group actions, * Linear symplectic algebra and symplectic geometry, * Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
A complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on solid varieties of semirings and semigroups. The book aims to develop the theory of solid varieties as a system of mathematical discourse that is applicable in several concrete situations. A unique feature of this book is the use of Galois connections to integrate different topics.
Profinite groups are of interest to mathematicians working in a variety of areas, including number theory, abstract groups, and analysis. The underlying theory reflects these diverse influences, with methods drawn from both algebra and topology and with fascinating connections to field theory. This is the first book to be dedicated solely to the study of general profinite groups. It provides a thorough introduction to the subject, designed not only to convey the basic facts but also to enable readers to enhance their skills in manipulating profinite groups. The first few chapters lay the foundations and explain the role of profinite groups in number theory. Later chapters explore various aspects of profinite groups in more detail; these contain accessible and lucid accounts of many major theorems. Prerequisites are kept to a minimum with the basic topological theory summarized in an introductory chapter.
From the Preface by V. S. VARADARAJAN: "These volumes of the Collected Papers of Harish-Chandra are being brought out in response to a widespread feeling in the mathematical community that they would immensely benefit scholars and research workers, especially those in analysis, representation theory, arithmetic, mathematical physics, and other related areas. lt is hoped that in addition to making his contributions more accessible by collecting them in one place, these volumes would help focus renewed attention on his ideas and methods as well as lend additional perspective to them." The papers are arranged chronologically, Volume I collects Harish-Chandra's articles written between 1944 and 1954.
The Bialowieza workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931-1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanislaw Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today's perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanislaw Lech Woronowicz. Mielnik's geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz' fruitful notion of a compact quantum group and related topics are also addressed.
From the Preface by V. S. VARADARAJAN: "These volumes of the Collected Papers of Harish-Chandra are being brought out in response to a widespread feeling in the mathematical community that they would immensely benefit scholars and research workers, especially those in analysis, representation theory, arithmetic, mathematical physics, and other related areas. lt is hoped that in addition to making his contributions more accessible by collecting them in one place, these volumes would help focus renewed attention on his ideas and methods as well as lend additional perspective to them." The papers are arranged chronologically, Volume III collects his articles written between 1959 and 1968. |
![]() ![]() You may like...
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R6,177
Discovery Miles 61 770
Classical Hopf Algebras and Their…
Pierre Cartier, Frederic Patras
Hardcover
R3,712
Discovery Miles 37 120
Yakov Berkovich; Zvonimir Janko: Groups…
Yakov G Berkovich, Zvonimir Janko
Hardcover
R5,959
Discovery Miles 59 590
Computation and Combinatorics in…
Elena Celledoni, Giulia Di Nunno, …
Hardcover
R5,202
Discovery Miles 52 020
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,717
Discovery Miles 37 170
|