![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.
Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings. Audience: Graduate students of mathematics and algebraists interested in near-ring theory.
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups.
The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts."
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
"Numerical Semigroups" is the first monograph devoted exclusively to the development of the theory of numerical semigroups. This concise, self-contained text is accessible to first year graduate students, giving the full background needed for readers unfamiliar with the topic. Researchers will find the tools presented useful in producing examples and counterexamples in other fields such as algebraic geometry, number theory, and linear programming.
This detailed yet accessible text provides an essential introduction to the advanced mathematical methods at the core of theoretical physics. The book steadily develops the key concepts required for an understanding of symmetry principles and topological structures, such as group theory, differentiable manifolds, Riemannian geometry, and Lie algebras. Based on a course for senior undergraduate students of physics, it is written in a clear, pedagogical style and would also be valuable to students in other areas of science and engineering. The material has been subject to more than twenty years of feedback from students, ensuring that explanations and examples are lucid and considered, and numerous worked examples and exercises reinforce key concepts and further strengthen readers' understanding. This text unites a wide variety of important topics that are often scattered across different books, and provides a solid platform for more specialized study or research.
Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject."
Microlocal analysis began around 1970 when Mikio Sato, along with coauthors Masaki Kashiwara and Takahiro Kawai, wrote a decisive article on the structure of pseudodifferential equations, thus laying the foundation of D-modules and the singular spectrums of hyperfunctions. The key idea is the analysis of problems on the phase space, i.e., the cotangent bundle of the base space. Microlocal analysis is an active area of mathematical research that has been applied to many fields such as real and complex analysis, representation theory, topology, number theory, and mathematical physics. This volume contains the presentations given at a seminar jointly organized by the Japan Society for the Promotion of Science and Centre National des Recherches Scientifiques entitled New Trends in Microlocal Analysis. The book is divided into three parts: partial differential equations and mathematical analysis, mathematical physics, and algebraic analysis - D-modules and sheave theory. The large variety of new research that is covered will prove invaluable to students and researchers alike.
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel's work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.
This is a translation from the Japanese of the second volume (chapters four through six) of my book "Gunron" (Iwanami Shoten, 1978). After discussing the concept of commutators in the fourth chapter, we tum to a discussion of the methods and theorems pertaining to finite groups. The last chapter is intended as an introduction to the recent progress in the theory of simple groups. Forihe translation, I have kept the main body of the text unchanged, however I have added a few comments in the last chapter in order to inform the readers of the most recent progress. I would like to express my appreciation to Kazuko Suzuki for her devoted help in translating this book. Finally, it gives me great pleasure to acknowl edge my indebtedness to my wife, Naoko, for her constant support and understanding, and for converting the long and often illegible manuscript into a beautifully typed one. To her, I express my sincere thanks and appreciation. July, 1985 Michio Suzuki Contents (Part II) List of Notation IX Chapter 4 Commutators 1. Commutator Subgroups 2. Nilpotent Groups 13 37 3. Commutator Calculations 54 4. Finite p-Groups . . ."
Many group theorists all over the world have been trying in the last twenty-five years to extend and adapt the magnificent methods of the Theory of Finite Soluble Groups to the more ambitious universe of all finite groups. This is a natural progression after the classification of finite simple groups but the achievements in this area are scattered in various papers. Our objectives in this book were to gather, order and examine all this material, including the latest advances made, give a new approach to some classic topics, shed light on some fundamental facts that still remain unpublished and present some new subjects of research in the theory of classes of finite, not necessarily solvable, groups.
Although group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, especially Lie groups, and their characteristics in a way that is easily comprehensible to physicists. The book first introduces the concept of a group and the characteristics that are imperative for developing group theory as applied to high energy physics. It then describes group representations since matrix representations of a group are often more convenient to deal with than the abstract group itself. With a focus on continuous groups, the text analyzes the root structure of important groups and obtains the weights of various representations of these groups. It also explains how symmetry principles associated with group theoretical techniques can be used to interpret experimental results and make predictions. This concise, gentle introduction is accessible to undergraduate and graduate students in physics and mathematics as well as researchers in high energy physics. It shows how to apply group theory to solve high energy physics problems.
The theory of algebraic groups results from the interaction of various basic techniques from field theory, multilinear algebra, commutative ring theory, algebraic geometry and general algebraic representation theory of groups and Lie algebras. It is thus an ideally suitable framework for exhibiting basic algebra in action. To do that is the principal concern of this text. Accordingly, its emphasis is on developing the major general mathematical tools used for gaining control over algebraic groups, rather than on securing the final definitive results, such as the classification of the simple groups and their irreducible representations. In the same spirit, this exposition has been made entirely self-contained; no detailed knowledge beyond the usual standard material of the first one or two years of graduate study in algebra is pre supposed. The chapter headings should be sufficient indication of the content and organisation of this book. Each chapter begins with a brief announcement of its results and ends with a few notes ranging from supplementary results, amplifications of proofs, examples and counter-examples through exercises to references. The references are intended to be merely suggestions for supplementary reading or indications of original sources, especially in cases where these might not be the expected ones. Algebraic group theory has reached a state of maturity and perfection where it may no longer be necessary to re-iterate an account of its genesis. Of the material to be presented here, including much of the basic support, the major portion is due to Claude Chevalley."
Finite reductive groups and their representations lie at the heart of goup theory. After representations of finite general linear groups were determined by Green (1955), the subject was revolutionized by the introduction of constructions from l-adic cohomology by Deligne-Lusztig (1976) and by the approach of character-sheaves by Lusztig (1985). The theory now also incorporates the methods of Brauer for the linear representations of finite groups in arbitrary characteristic and the methods of representations of algebras. It has become one of the most active fields of contemporary mathematics. The present volume reflects the richness of the work of experts
gathered at an international conference held in Luminy. Linear
representations of finite reductive groups (Aubert, Curtis-Shoji,
Lehrer, Shoji) and their modular aspects Cabanes Enguehard,
Geck-Hiss) go side by side with many related structures: Hecke
algebras associated with Coxeter groups (Ariki, Geck-Rouquier,
Pfeiffer), complex reflection groups (Broue-Michel, Malle), quantum
groups and Hall algebras (Green), arithmetic groups (Vigneras), Lie
groups (Cohen-Tiep), symmetric groups (Bessenrodt-Olsson), and
general finite groups (Puig). With the illuminating introduction by
Paul Fong, the present volume forms the best invitation to the
field.
This book examines translanguaging as a resource which can disrupt the privileging of particular voices, and a social practice which enables collaboration within and across groups of people. Addressing the themes of collaboration and transformation, the chapters critically examine how people work together to catalyse change in diverse global contexts, experiences and traditions. The authors suggest an epistemological and methodological turn to the study of translanguaging, which is particularly reflected in the collaborative, arts-based and action research/activist approaches followed in the chapters. The book will be of particular interest to scholars using ethnographic, critical and collaborative action and activist research approaches to the study of multilingualism in educational and creative arts contexts.
The algebra of square matrices of size n ~ 2 over the field of complex numbers is, evidently, the best-known example of a non-commutative alge 1 bra * Subalgebras and subrings of this algebra (for example, the ring of n x n matrices with integral entries) arise naturally in many areas of mathemat ics. Historically however, the study of matrix algebras was preceded by the discovery of quatemions which, introduced in 1843 by Hamilton, found ap plications in the classical mechanics of the past century. Later it turned out that quaternion analysis had important applications in field theory. The al gebra of quaternions has become one of the classical mathematical objects; it is used, for instance, in algebra, geometry and topology. We will briefly focus on other examples of non-commutative rings and algebras which arise naturally in mathematics and in mathematical physics. The exterior algebra (or Grassmann algebra) is widely used in differential geometry - for example, in geometric theory of integration. Clifford algebras, which include exterior algebras as a special case, have applications in rep resentation theory and in algebraic topology. The Weyl algebra (Le. algebra of differential operators with* polynomial coefficients) often appears in the representation theory of Lie algebras. In recent years modules over the Weyl algebra and sheaves of such modules became the foundation of the so-called microlocal analysis. The theory of operator algebras (Le.
There is no question that the cohomology of infinite dimensional Lie algebras deserves a brief and separate mono graph. This subject is not cover d by any of the tradition al branches of mathematics and is characterized by relative ly elementary proofs and varied application. Moreover, the subject matter is widely scattered in various research papers or exists only in verbal form. The theory of infinite-dimensional Lie algebras differs markedly from the theory of finite-dimensional Lie algebras in that the latter possesses powerful classification theo rems, which usually allow one to "recognize" any finite dimensional Lie algebra (over the field of complex or real numbers), i.e., find it in some list. There are classifica tion theorems in the theory of infinite-dimensional Lie al gebras as well, but they are encumbered by strong restric tions of a technical character. These theorems are useful mainly because they yield a considerable supply of interest ing examples. We begin with a list of such examples, and further direct our main efforts to their study."
In the early 70's and 80's the field of integrable systems was in its prime youth: results and ideas were mushrooming all over the world. It was during the roaring 70's and 80's that a first version of the book was born, based on our research and on lectures which each of us had given. We owe many ideas to our colleagues Teruhisa Matsusaka and David Mumford, and to our inspiring graduate students (Constantin Bechlivanidis, Luc Haine, Ahmed Lesfari, Andrew McDaniel, Luis Piovan and Pol Vanhaecke). As it stood, our first version lacked rigor and precision, was rough, dis connected and incomplete. . . In the early 90's new problems appeared on the horizon and the project came to a complete standstill, ultimately con fined to a floppy. A few years ago, under the impulse of Pol Vanhaecke, the project was revived and gained real momentum due to his insight, vision and determination. The leap from the old to the new version is gigantic. The book is designed as a teaching textbook and is aimed at a wide read ership of mathematicians and physicists, graduate students and professionals."
Varieties of algebras are equationally defined classes of algebras, or "primitive classes" in MAL'CEV'S terminology. They made their first explicit appearance in the 1930's, in Garrett BIRKHOFF'S paper on "The structure of abstract algebras" and B. H. NEUMANN'S paper "Identical relations in groups I." For quite some time after this, there is little published evidence that the subject remained alive. In fact, however, as part of "universal algebra," it aroused great interest amongst those who had access, directly or indirectly, to PHILIP HALL'S lectures given at Cambridge late in the 1940's. More recently, category theory has provided a general setting since varieties, suitably interpreted, are very special examples of categories. Whether their relevance to category theory goes beyond this, I do not know. And I doubt that the category theoretical approach to varieties will be more than a fringe benefit to group theory. Whether or not my doubts have substance, the present volume owes its existence not to the fact that varieties fit into a vastly more general pattern, but to the benefit group theory has derived from the classification of groups by varietal properties. It is this aspect of the study of varieties that seems to have caused its reappearance in the literature in the 1950's.
Modem geometric methods combine the intuitiveness of spatial visualization with the rigor of analytical derivation. Classical analysis is shown to provide a foundation for the study of geometry while geometrical ideas lead to analytical concepts of intrinsic beauty. Arching over many subdisciplines of mathematics and branching out in applications to every quantitative science, these methods are, notes the Russian mathematician A.T. Fomenko, in tune with the Renais sance traditions. Economists and finance theorists are already familiar with some aspects of this synthetic tradition. Bifurcation and catastrophe theo ries have been used to analyze the instability of economic models. Differential topology provided useful techniques for deriving results in general equilibrium analysis. But they are less aware of the central role that Felix Klein and Sophus Lie gave to group theory in the study of geometrical systems. Lie went on to show that the special methods used in solving differential equations can be classified through the study of the invariance of these equations under a continuous group of transformations. Mathematicians and physicists later recognized the relation between Lie's work on differential equations and symme try and, combining the visions of Hamilton, Lie, Klein and Noether, embarked on a research program whose vitality is attested by the innumerable books and articles written by them as well as by biolo gists, chemists and philosophers."
For many, modern functional analysis dates back to Banach's book [Ba32]. Here, such powerful results as the Hahn-Banach theorem, the open-mapping theorem and the uniform boundedness principle were developed in the setting of complete normed and complete metrizable spaces. When analysts realized the power and applicability of these methods, they sought to generalize the concept of a metric space and to broaden the scope of these theorems. Topological methods had been generally available since the appearance of Hausdorff's book in 1914. So it is surprising that it took so long to recognize that they could provide the means for this generalization. Indeed, the theory of topo- logical vector spaces was developed systematically only after 1950 by a great many different people, induding Bourbaki, Dieudonne, Grothendieck, Kothe, Mackey, Schwartz and Treves. The resulting body of work produced a whole new area of mathematics and generalized Banach's results. One of the great successes here was the development of the theory of distributions. While the not ion of a convergent sequence is very old, that of a convergent fil- ter dates back only to Cartan [Ca]. And while sequential convergence structures date back to Frechet [Fr], filter convergence structures are much more recent: [Ch], [Ko] and [Fi]. Initially, convergence spaces and convergence vector spaces were used by [Ko], [Wl], [Ba], [Ke64], [Ke65], [Ke74], [FB] and in particular [Bz] for topology and analysis.
Simplicity theory is an extension of stability theory to a wider class of structures, containing, among others, the random graph, pseudo-finite fields, and fields with a generic automorphism. Following Kim's proof of forking symmetry' which implies a good behaviour of model-theoretic independence, this area of model theory has been a field of intense study. It has necessitated the development of some important new tools, most notably the model-theoretic treatment of hyperimaginaries (classes modulo type-definable equivalence relations). It thus provides a general notion of independence (and of rank in the supersimple case) applicable to a wide class of algebraic structures. The basic theory of forking independence is developed, and its properties in a simple structure are analyzed. No prior knowledge of stability theory is assumed; in fact many stability-theoretic results follow either from more general propositions, or are developed in side remarks. Audience: This book is intended both as an introduction to simplicity theory accessible to graduate students with some knowledge of model theory, and as a reference work for research in the field. |
You may like...
Discovery of Geospatial Resources…
Laura Diaz, Carlos Granell, …
Hardcover
R4,813
Discovery Miles 48 130
Innovations in Soft Computing and…
Jayeeta Chattopadhyay, Rahul Singh, …
Hardcover
R4,042
Discovery Miles 40 420
Applications of Radiation Chemistry in…
Margherita Venturi, Mila D'angelantonio
Hardcover
R11,800
Discovery Miles 118 000
|