Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties - namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables - the latter not to be found elsewhere in the mathematics literature - round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
The great Norwegian mathematician Sophus Lie developed the general theory of transformations in the 1870s, and the first part of the book properly focuses on his work. In the second part the central figure is Wilhelm Killing, who developed structure and classification of semisimple Lie algebras. The third part focuses on the developments of the representation of Lie algebras, in particular the work of Elie Cartan. The book concludes with the work of Hermann Weyl and his contemporaries on the structure and representation of Lie groups which serves to bring together much of the earlier work into a coherent theory while at the same time opening up significant avenues for further work.
Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance."
This series presents some tools of applied mathematics in the areas of proba bility theory, operator calculus, representation theory, and special functions used currently, and we expect more and more in the future, for solving problems in math ematics, physics, and, now, computer science. Much of the material is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of the material is original with the authors. The presentation of probability theory in connection with group represen tations is new, this appears in Volume I. Then the applications to computer science in Volume II are original as well. The approach found in Volume III, which deals in large part with infinite-dimensional representations of Lie algebras/Lie groups, is new as well, being inspired by the desire to find a recursive method for calcu lating group representations. One idea behind this is the possibility of symbolic computation of the matrix elements. In this volume, Representations and Probability Theory, we present an intro duction to Lie algebras and Lie groups emphasizing the connections with operator calculus, which we interpret through representations, principally, the action of the Lie algebras on spaces of polynomials. The main features are the connection with probability theory via moment systems and the connection with the classical ele mentary distributions via representation theory. The various systems of polynomi als that arise are one of the most interesting aspects of this study.
One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series."
This standard reference on applications of invariant theory to the construction of moduli spaces is a systematic exposition of the geometric aspects of classical theory of polynomial invariants. This new, revised edition is completely updated and enlarged with an additional chapter on the moment map by Professor Frances Kirwan. It includes a fully updated bibliography of work in this area.
In many ways the last decade has witnessed a surge of interest in the interplay between theoretical physics and some traditional areas of pure mathematics. This book contains the lectures delivered at the NATO-ASI Summer School on `Recent Problems in Mathematical Physics' held at Salamanca, Spain (1992), offering a pedagogical and updated approach to some of the problems that have been at the heart of these events. Among them, we should mention the new mathematical structures related to integrability and quantum field theories, such as quantum groups, conformal field theories, integrable statistical models, and topological quantum field theories, that are discussed at length by some of the leading experts on the areas in several of the lectures contained in the book. Apart from these, traditional and new problems in quantum gravity are reviewed. Other contributions to the School included in the book range from symmetries in partial differential equations to geometrical phases in quantum physics. The book is addressed to researchers in the fields covered, PhD students and any scientist interested in obtaining an updated view of the subjects.
The representation theory of the symmetric group, of Chevalley groups particularly in positive characteristic and of Lie algebraic systems, has undergone some remarkable developments in recent years. Many techniques are inspired by the great works of Issai Schur who passed away some 60 years ago. This volume is dedicated to his memory. This is a unified presentation consisting of an extended biography of Schur---written in collaboration with some of his former students---as well as survey articles on Schur's legacy (Schur theory, functions, etc). Additionally, there are articles covering the areas of orbits, crystals and representation theory, with special emphasis on canonical bases and their crystal limits, and on the geometric approach linking orbits to representations and Hecke algebra techniques. Extensions of representation theory to mathematical physics and geometry will also be presented. Contributors: Biography: W. Ledermann, B. Neumann, P.M. Neumann, H. Abelin- Schur; Review of work: H. Dym, V. Katznelson; Original papers: H. H. Andersen, A. Braverman, S. Donkin, V. Ivanov, D. Kazhdan, B. Kostant, A. Lascoux, N. Lauritzen, B. Leclerc, P. Littelmann, G. Luzstig, O.Mathieu, M. Nazarov, M. Reinek, J.-Y. Thibon, G. Olshanski, E. Opdam, A. Regev, C.S. Seshadri, M. Varagnolo, E. Vasserot, A. Vershik This volume will serve as a comprehensive reference as well as a good text for graduate seminars in representation theory, algebra, and mathematical physics.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2, Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights.
* Develops new tools to efficiently describe different branches of physics within one mathematical framework * Gives a clear geometric expression of the symmetry of physical laws * Useful for researchers and graduate students interested in the many physical applications of bounded symmetric domains * Will also benefit a wider audience of mathematicians, physicists, and graduate students working in relativity, geometry, and Lie theory
First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world. English reading students now have the opportunity to enjoy this lively presentation, from elementary ideas to cartoons to funny examples, and to follow the mind of an imaginative and creative mathematician into a world of enduring mathematical creations.
This is the first monograph to exclusively treat Kac-Moody (K-M) groups, a standard tool in mathematics and mathematical physics. K-M Lie algebras were introduced in the mid-sixties independently by V. Kac and R. Moody, generalizing finite-dimensional semisimple Lie algebras. K-M theory has since undergone tremendous developments in various directions and has profound connections with a number of diverse areas, including number theory, combinatorics, topology, singularities, quantum groups, completely integrable systems, and mathematical physics. This comprehensive, well-written text moves from K-M Lie algebras to the broader K-M Lie group setting, and focuses on the study of K-M groups and their flag varieties. In developing K-M theory from scratch, the author systematically leads readers to the forefront of the subject, treating the algebro-geometric, topological, and representation-theoretic aspects of the theory. Most of the material presented here is not available anywhere in the book literature.{\it Kac--Moody Groups, their Flag Varieties and Representation Theory} is suitable for an advanced graduate course in representation theory, and contains a number of examples, exercises, challenging open problems, comprehensive bibliography, and index. Research mathematicians at the crossroads of representation theory, geometry, and topology will learn a great deal from this text; although the book is devoted to the general K-M case, those primarily interested in the finite-dimensional case will also benefit. No prior knowledge of K-M Lie algebras or of (finite-dimensional) algebraic groups is required, but some basic knowledge would certainly be helpful. For the reader's convenience some of the basic results needed from other areas, including ind-varieties, pro-algebraic groups and pro-Lie algebras, Tits systems, local cohomology, equivariant cohomology, and homological algebra are included.
This self-contained text presents quantum mechanics from the point of view of some computational examples with a mixture of mathematical clarity often not found in texts offering only a purely physical point of view. Emphasis is placed on the systematic application of the Nikiforov-- Uvarov theory of generalized hypergeometric differential equations to solve the Schr"dinger equation and to obtain the quantization of energies from a single unified point of view.
'Ht moi ..., si favait su comment en reveniT, One service mathematics hal rendered the je n'y serais point aile.' human race. It has put C"
Modern algebra, which not long ago seemed to be a science divorced from real life, now has numerous applications. Many fine algebraic structures are endowed with meaningful contents. Now and then practice suggests new and unexpected structures enriching algebra. This does not mean that algebra has become merely a tool for applications. Quite the contrary, it significantly benefits from the new connections. The present book is devoted to some algebraic aspects of the theory of databases. It consists of three parts. The first part contains information about universal algebra, algebraic logic is the subject of the second part, and the third one deals with databases. The algebraic material of the flI'St two parts serves the common purpose of applying algebra to databases. The book is intended for use by mathematicians, and mainly by algebraists, who realize the necessity to unite theory and practice. It is also addressed to programmers, engineers and all potential users of mathematics who want to construct their models with the help of algebra and logic. Nowadays, the majority of professional mathematicians work in close cooperation with representatives of applied sciences and even industrial technology. It is neces sary to develop an ability to see mathematics in different particular situations. One of the tasks of this book is to promote the acquisition of such skills."
On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.
This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations."
This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups.
The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.
The aim of this book is the classification of symplectic amalgams - structures which are intimately related to the finite simple groups. In all there sixteen infinite families of symplectic amalgams together with 62 more exotic examples. The classification touches on many important aspects of modern group theory: * p-local analysis * the amalgam method * representation theory over finite fields; and * properties of the finite simple groups. The account is for the most part self-contained and the wealth of detail makes this book an excellent introduction to these recent developments for graduate students, as well as a valuable resource and reference for specialists in the area.
This text is intended to serve as an introduction to the geometry of the action of discrete groups of Mobius transformations. The subject matter has now been studied with changing points of emphasis for over a hundred years, the most recent developments being connected with the theory of 3-manifolds: see, for example, the papers of Poincare [77] and Thurston [101]. About 1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen manuscript appeared. Sadly, the manuscript never appeared in print, and this more modest text attempts to display at least some of the beautiful geo metrical ideas to be found in that manuscript, as well as some more recent material. The text has been written with the conviction that geometrical explana tions are essential for a full understanding of the material and that however simple a matrix proof might seem, a geometric proof is almost certainly more profitable. Further, wherever possible, results should be stated in a form that is invariant under conjugation, thus making the intrinsic nature of the result more apparent. Despite the fact that the subject matter is concerned with groups of isometries of hyperbolic geometry, many publications rely on Euclidean estimates and geometry. However, the recent developments have again emphasized the need for hyperbolic geometry, and I have included a comprehensive chapter on analytical (not axiomatic) hyperbolic geometry. It is hoped that this chapter will serve as a "dictionary" offormulae in plane hyperbolic geometry and as such will be of interest and use in its own right.
The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method."
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts." |
You may like...
Computation and Combinatorics in…
Elena Celledoni, Giulia Di Nunno, …
Hardcover
R4,961
Discovery Miles 49 610
Sequences, Groups, and Number Theory
Valerie Berthe, Michel Rigo
Hardcover
R4,944
Discovery Miles 49 440
Symmetry: Representation Theory and Its…
Roger Howe, Markus Hunziker, …
Hardcover
R3,394
Discovery Miles 33 940
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,490
Discovery Miles 44 900
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R5,888
Discovery Miles 58 880
Modules over Discrete Valuation Rings
Piotr A. Krylov, Askar A. Tuganbaev
Hardcover
R4,053
Discovery Miles 40 530
|