![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups." The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.
This book examines translanguaging as a resource which can disrupt the privileging of particular voices, and a social practice which enables collaboration within and across groups of people. Addressing the themes of collaboration and transformation, the chapters critically examine how people work together to catalyse change in diverse global contexts, experiences and traditions. The authors suggest an epistemological and methodological turn to the study of translanguaging, which is particularly reflected in the collaborative, arts-based and action research/activist approaches followed in the chapters. The book will be of particular interest to scholars using ethnographic, critical and collaborative action and activist research approaches to the study of multilingualism in educational and creative arts contexts.
"Essays in Group Theory" contains five papers on topics of current interest which were presented in a seminar at MSRI, Berkeley in June, 1985. Special mention should be given to Gromovs paper, one of the most significant in the field in the last decade. It develops the theory of hyperbolic groups to include a version of small cancellation theory sufficiently powerful to recover deep results of Ol'shanskii and Rips. Each of the remaining papers, by Baumslag and Shalen, Gersten, Shalen, and Stallings contains gems. For example, the reader will delight in Stallings' explicit construction of free actions of orientable surface groups on R-trees. Gersten's paper lays the foundations for a theory of equations over groups and contains a very quick solution to conjugacy problem for a class of hyperbolic groups. Shalen's article reviews the rapidly expanding theory of group actions on R-trees and the Baumslag-Shalen article uses modular representation theory to establish properties of presentations whose relators are pth-powers.
The German edition of this book appeared in 1932 under the title "Die gruppentheoretische Methode in der Quantenmechanik." Its aim was, to explain the fundamental notions of the Theory of Groups and their Representations, and the application of this theory to the Quantum Mechanics of Atoms and Molecules. The book was mainly written for the benefit of physicists who were supposed to be familiar with Quantum Mechanics. However, it turned out that it was also used by. mathematicians who wanted to learn Quantum Mechanics from it. Naturally, the physical parts were too difficult for mathematicians, whereas the mathematical parts were sometimes too difficult for physicists. The German language created an additional difficulty for many readers. In order to make the book more readable for physicists and mathe maticians alike, I have rewritten the whole volume. The changes are most notable in Chapters 1 and 6. In Chapter t, I have tried to give a mathematically rigorous exposition of the principles of Quantum Mechanics. This was possible because recent investigations in the theory of self-adjoint linear operators have made the mathematical foundation of Quantum Mechanics much clearer than it was in t 932. Chapter 6, on Molecule Spectra, was too much condensed in the German edition. I hope it is now easier to understand. In Chapter 2-5 too, numerous changes were made in order to make the book more readable and more useful."
Although group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, especially Lie groups, and their characteristics in a way that is easily comprehensible to physicists. The book first introduces the concept of a group and the characteristics that are imperative for developing group theory as applied to high energy physics. It then describes group representations since matrix representations of a group are often more convenient to deal with than the abstract group itself. With a focus on continuous groups, the text analyzes the root structure of important groups and obtains the weights of various representations of these groups. It also explains how symmetry principles associated with group theoretical techniques can be used to interpret experimental results and make predictions. This concise, gentle introduction is accessible to undergraduate and graduate students in physics and mathematics as well as researchers in high energy physics. It shows how to apply group theory to solve high energy physics problems.
2 The authors of these issues involve not only mathematicians, but also speci alists in (mathematical) physics and computer sciences. So here the reader will find different points of view and approaches to the considered field. A. M. VINOGRADOV 3 Acta Applicandae Mathematicae 15: 3-21, 1989. (c) 1989 Kluwer Academic Publishers. Symmetries and Conservation Laws of Partial Differential Equations: Basic Notions and Results A. M. VINOORADOV Department of Mathematics, Moscow State University, 117234, Moscow, U. S. S. R. (Received: 22 August 1988) Abstract. The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed. AMS subject classifications (1980). 35A30, 58005, 58035, 58H05. Key words. Higher symmetries, conservation laws, partial differential equations, infinitely prolonged equations, generating functions. o. Introduction In this paper we present the basic notions and results from the general theory of local symmetries and conservation laws of partial differential equations. More exactly, we will focus our attention on the main conceptual points as well as on the problem of how to find all higher symmetries and conservation laws for a given system of partial differential equations. Also, some general views and perspectives will be discussed.
From the reviews "Since E. Hille and K. Yoshida established the characterization of generators of "C"0 semigroups in the 1940s, semigroups of linear operators and its neighboring areas have developed into a beautiful abstract theory. Moreover, the fact that mathematically this abstract theory has many direct and important applications in partial differential equations enhances its importance as a necessary discipline in both functional analysis and differential equations. In my opinion Pazy has done an outstanding job in presenting both the abstract theory and basic applications in a clear and interesting manner. The choice and order of the material, the clarity of the proofs, and the overall presentation make this an excellent place for both researchers and students to learn about "C"0 semigroups." #"Bulletin Applied Mathematical Sciences 4/85"#1 "In spite of the other monographs on the subject, the reviewer can recommend that of Pazy as being particularly written, with a bias noticeably different from that of the other volumes. Pazy's decision to give a connected account of the applications to partial differential equations in the last two chapters was a particularly happy one, since it enables one to see what the theory can achieve much better than would the insertion of occasional examples. The chapters achieve a very nice balance between being so easy as to appear disappointing, and so sophisticated that they are incomprehensible except to the expert." #"Bulletin of the" "London Mathematical Society"#2
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
A. Figa Talamanca: Random Fourier series on compact groups.- S. Helgason: Representations of semisimple Lie groups.- H. Jacquet: Representations des groupes lineaires p-adiques.- G.W. Mackey: Infinite-dimensional group representations and their applications.
During the week of September 13, 1988 the Mathematical Sciences Research Institute hosted a four day workshop on Arboreal Group Theory. This volume is the product of that meeting. The program centered on the topic of the theory of groups acting on trees and the various applications to hyperbolic geometry. Topics include the theory of length functions, structure of groups acting freely on trees, spaces of hyperbolic structures and their compactifications, and moduli for tree actions.
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books GH] and EW. The title tions. So this book (, Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible."
The 20 sporadics involved in the Monster, the largest sporadic group, constitute the Happy Family. This book is a leisurely and rigorous study of two of their three generations. The level is suitable for graduate students with little background in general finite group theory, established mathematicians and mathematical physicists.
Quantum groups have been investigated rather deeply in mathematical physics over the last decade. Among the most prominent contributions in this area let us mention the works of V.G. Drinfeld, S.L. Woronowicz, S. Majid. Prob ability the- ory on quantum groups has developed in several directions (see works of P. Biane, RL. Hudson and K.R Partasarathy, P.A. Meyer, M. Schurmann, D. Voiculescu). The aim of this book is to present several new aspects related to quantum groups: operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Much of the ma- terial is scattered throughout available literature, however, we have nowhere found in accessible form all of this material collected. The presentation of representation theory in connection with Appell systems is original with the authors. Stochastic processes (example: Brownian motion, diffusion processes, Levy processes) are in- vestigated and several examples are presented. As a text the work is intended to be accessible to graduate students and researchers not specialised in quantum prob ability. We would like to acknowledge our colleagues P. Feinsilver, R Lenzceswki, D.
Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.
Some mathematical disciplines can be presented and developed in the context of other disciplines, for instance Boolean algebras, that Stone has converted in a branch of ring theory, projective geome- tries, characterized by Birkhoff as lattices of a special type, projec- tive, descriptive and spherical geometries, represented by Prenowitz, as multigroups, linear geometries and convex sets presented by Jan- tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak did for geometries, in this book we present and study several ma- thematical disciplines that use the Hyperstructure Theory. Since the beginning, the Hyperstructure Theory and particu- larly the Hypergroup Theory, had applications to several domains. Marty, who introduced hypergroups in 1934, applied them to groups, algebraic functions and rational fractions. New applications to groups were also found among others by Eaton, Ore, Krasner, Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad. Connections with other subjects of classical pure Mathematics have been determined and studied: * Fields by Krasner, Stratigopoulos and Massouros Ch. * Lattices by Mittas, Comer, Konstantinidou, Serafimidis, Leoreanu and Calugareanu * Rings by Nakano, Kemprasit, Yuwaree * Quasigroups and Groupoids by Koskas, Corsini, Kepka, Drbohlav, Nemec * Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra- sit, Punkla, Leoreanu * Ordered Structures by Prenowitz, Corsini, Chvalina IX x * Combinatorics by Comer, Tallini, Migliorato, De Salvo, Scafati, Gionfriddo, Scorzoni * Vector Spaces by Mittas * Topology by Mittas , Konstantinidou * Ternary Algebras by Bandelt and Hedlikova.
It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. This analysis was especially fruitful in application to the basic equations of mechanics and physics because the invariance principles are already involved in their derivation. It is in no way a coincidence that the equations of hydrodynamics served as the first object for applying the new ideas and methods of group analysis which were developed by 1. V. Ovsyannikov and his school. The authors rank themselves as disciples of the school. The present monograph deals mainly with group-theoretic classification of the equations of hydrodynamics in the presence of planar and rotational symmetry and also with construction of exact solutions and their physical interpretation. It is worth noting that the concept of exact solution to a differential equation is not defined rigorously; different authors understand it in different ways. The concept of exact solution expands along with the progress of mathematics (solu tions in elementary functions, in quadratures, and in special functions; solutions in the form of convergent series with effectively computable terms; solutions whose searching reduces to integrating ordinary differential equations; etc. ). We consider it justifiable to enrich the set of exact solutions with rank one and rank two in variant and partially invariant solutions to the equations of hydrodynamics."
This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.
This book contains the proceedings of a meeting that brought together friends and colleagues of Guy Rideau at the Universite Denis Diderot (Paris, France) in January 1995. It contains original results as well as review papers covering important domains of mathematical physics, such as modern statistical mechanics, field theory, and quantum groups. The emphasis is on geometrical approaches. Several papers are devoted to the study of symmetry groups, including applications to nonlinear differential equations, and deformation of structures, in particular deformation-quantization and quantum groups. The richness of the field of mathematical physics is demonstrated with topics ranging from pure mathematics to up-to-date applications such as imaging and neuronal models. Audience: Researchers in mathematical physics. "
It became more and more usual, from, say, the 1970s, for each book on Module Theory, to point out and prove some (but in no more than 15 to 20 pages) generalizations to (mostly modular) lattices. This was justified by the nowadays widely accepted perception that the structure of a module over a ring is best understood in terms of the lattice struc ture of its submodule lattice. Citing Louis H. Rowen "this important example (the lattice of all the submodules of a module) is the raison d'etre for the study of lattice theory by ring theorists". Indeed, many module-theoretic results can be proved by using lattice theory alone. The purpose of this book is to collect and present all and only the results of this kind, although for this purpose one must develop some significant lattice theory. The results in this book are of the following categories: the folklore of Lattice Theory (to be found in each Lattice Theory book), module theoretic results generalized in (modular, and possibly compactly gen erated) lattices (to be found in some 6 to 7 books published in the last 20 years), very special module-theoretic results generalized in lattices (e. g. , purity in Chapter 9 and several dimensions in Chapter 13, to be found mostly in [27], respectively, [34] and [18]) and some new con cepts (e. g.
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details)."
Nowadays algebra is understood basically as the general theory of algebraic oper ations and relations. It is characterised by a considerable intrinsic naturalness of its initial notions and problems, the unity of its methods, and a breadth that far exceeds that of its basic concepts. It is more often that its power begins to be displayed when one moves outside its own limits. This characteristic ability is seen when one investigates not only complete operations, but partial operations. To a considerable extent these are related to algebraic operators and algebraic operations. The tendency to ever greater generality is amongst the reasons that playa role in explaining this development. But other important reasons play an even greater role. Within this same theory of total operations (that is, operations defined everywhere), there persistently arises in its different sections a necessity of examining the emergent feature of various partial operations. It is particularly important that this has been found in those parts of algebra it brings together and other areas of mathematics it interacts with as well as where algebra finds applica tion at the very limits of mathematics. In this connection we mention the theory of the composition of mappings, category theory, the theory of formal languages and the related theory of mathematical linguistics, coding theory, information theory, and algebraic automata theory. In all these areas (as well as in others) from time to time there arises the need to consider one or another partial operation."
Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU' ' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series."
The first book on commutative semigroups was Redei's The theory of .finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the stan- dard examples ofsemigroups, which consist ofvarious kinds oftransformations or arise from finite automata, and are usually quite noncommutative. Commutative of factoriza- semigroups provide a natural setting and a useful tool for the study tion in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semi groups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part oftoday's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002]. |
You may like...
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
Arithmetic and Geometry Around Galois…
Pierre Debes, Michel Emsalem, …
Hardcover
R4,072
Discovery Miles 40 720
|