![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups," provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
This book gathers concepts of information across diverse fields -physics, electrical engineering and computational science - surveying current theories, discussing underlying notions of symmetry, and showing how the capacity of a system to distinguish itself relates to information. The author develops a formal methodology using group theory, leading to the application of Burnside's Lemma to count distinguishable states. This provides a tool to quantify complexity and information capacity in any physical system.
Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo logical algebra and algebraic K-theory. It arose primarily in the 1920's and 1930's independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N"
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
From reviews of the German edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions." Mathematical Reviews
This book gives an exposition of the fundamentals of the theory of linear representations of ?nite and compact groups, as well as elements of the t- ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the ?eld under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of ?nite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely - pliedbranchesof algebra. Practically every timethatgroupsareencountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. 0. Basic Notions 0. 1.
This volume is the first in the series devoted to the commutative harmonic analysis, a fundamental part of the contemporary mathematics. The fundamental nature of this subject, however, has been determined so long ago, that unlike in other volumes of this publication, we have to start with simple notions which have been in constant use in mathematics and physics. Planning the series as a whole, we have assumed that harmonic analysis is based on a small number of axioms, simply and clearly formulated in terms of group theory which illustrate its sources of ideas. However, our subject cannot be completely reduced to those axioms. This part of mathematics is so well developed and has so many different sides to it that no abstract scheme is able to cover its immense concreteness completely. In particular, it relates to an enormous stock of facts accumulated by the classical "trigonometric" harmonic analysis. Moreover, subjected to a general mathematical tendency of integration and diffusion of conventional intersubject borders, harmonic analysis, in its modem form, more and more rests on non-translation invariant constructions. For example, one ofthe most signifi cant achievements of latter decades, which has substantially changed the whole shape of harmonic analysis, is the penetration in this subject of subtle techniques of singular integral operators."
This book, designed for advanced graduate students and post-graduate researchers, introduces Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory, which has inspired hundreds of papers about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations.
During the week of September 13, 1988 the Mathematical Sciences Research Institute hosted a four day workshop on Arboreal Group Theory. This volume is the product of that meeting. The program centered on the topic of the theory of groups acting on trees and the various applications to hyperbolic geometry. Topics include the theory of length functions, structure of groups acting freely on trees, spaces of hyperbolic structures and their compactifications, and moduli for tree actions.
This book presents the text of most of the lectures which were de- livered at the Meeting Quantum Theories and Geometry which was held at the Fondation Les Treilles from March 23 to March 27, 1987. The general aim of this meeting was to bring together mathemati- cians and physicists who have worked in this growing field of contact between the two disciplines, namely this region where geometry and physics interact creatively in both directions. It 1S the strong belief of the organizers that these written con- tributions will be a useful document for research people workin~ 1n geometry or physics. Three lectures were devoted to the deformation approach to quantum mechanics which involves a modification of both the associative and the Lie structure of the algebra of functions on classical phase space. A.Lichnerowicz shows how one can view classical and quantum statistical mechanics in terms of a deformation with a parameter inversely propor- tional to temperature. S.Gutt reviews the physical background of star products and indicates their applications in Lie groups representa- tion theory and in harmonic analysis. D.Arnal gives a rigorous theory Vll viii PREFACI of the star exponential in the case of the Heisenberg group and shows how this can be extended to arbitrary nilpotent groups.
Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.
Analysis on Lie Groups with Polynomial Growth is the first book to present a method for examining the surprising connection between invariant differential operators and almost periodic operators on a suitable nilpotent Lie group. It deals with the theory of second-order, right invariant, elliptic operators on a large class of manifolds: Lie groups with polynomial growth. In systematically developing the analytic and algebraic background on Lie groups with polynomial growth, it is possible to describe the large time behavior for the semigroup generated by a complex second-order operator with the aid of homogenization theory and to present an asymptotic expansion. Further, the text goes beyond the classical homogenization theory by converting an analytical problem into an algebraic one. This work is aimed at graduate students as well as researchers in the above areas. Prerequisites include knowledge of basic results from semigroup theory and Lie group theory.
This book explores the theory and application of locally nilpotent derivations. It provides a unified treatment of the subject, beginning with sixteen First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler 's Theorem for the plane, right up to the most recent results, such as Makar-Limanov 's Theorem for locally nilpotent derivations of polynomial rings. The book also includes a wealth of pexamples and open problems.
Eugene Wigner is one of the few giants of 20th-century physics. His early work helped to shape quantum mechanics, he laid the foundations of nuclear physics and nuclear engineering, and he contributed significantly to solid-state physics. His philosophical and political writings are widely known. All his works will be reprinted in Eugene Paul Wigner's Collected Workstogether with descriptive annotations by outstanding scientists. The present volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics. They are presented in two parts. The first, annotated by B. Judd, covers applications to atomic and molecular spectra, term structure, time reversal and spin. In the second, G. Mackey introduces to the reader the mathematical papers, many of which are outstanding contributions to the theory of unitary representations of groups, including the famous paper on the Lorentz group.
Representation theory, and more generally Lie theory, has played a very important role in many of the recent developments of mathematics and in the interaction of mathematics with physics. In August-September 1989, a workshop (Third Workshop on Representation Theory of Lie Groups and its Applications) was held in the environs of C6rdoba, Argentina to present expositions of important recent developments in the field that would be accessible to graduate students and researchers in related fields. This volume contains articles that are edited versions of the lectures (and short courses) given at the workshop. Within representation theory, one of the main open problems is to determine the unitary dual of a real reductive group. Although this prob lem is as yet unsolved, the recent work of Barbasch, Vogan, Arthur as well as others has shed new light on the structure of the problem. The article of D. Vogan presents an exposition of some aspects of this prob lem, emphasizing an extension of the orbit method of Kostant, Kirillov. Several examples are given that explain why the orbit method should be extended and how this extension should be implemented."
Here is a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These results are applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have recently been intensively studied. The focus is on the interplay between combinatorics and algebraic structure. Mathematical physicists will find this work interesting for its attention to applications of the Yang-Baxter equation.
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods."
When? These are the proceedings of Finite Geometries, the Fourth Isle of Thorns Conference, which took place from Sunday 16 to Friday 21 July, 2000. It was organised by the editors of this volume. The Third Conference in 1990 was published as Advances in Finite Geometries and Designs by Oxford University Press and the Second Conference in 1980 was published as Finite Geometries and Designs by Cambridge University Press. The main speakers were A. R. Calderbank, P. J. Cameron, C. E. Praeger, B. Schmidt, H. Van Maldeghem. There were 64 participants and 42 contributions, all listed at the end of the volume. Conference web site http://www. maths. susx. ac. uk/Staff/JWPH/ Why? This collection of 21 articles describes the latest research and current state of the art in the following inter-linked areas: * combinatorial structures in finite projective and affine spaces, also known as Galois geometries, in which combinatorial objects such as blocking sets, spreads and partial spreads, ovoids, arcs and caps, as well as curves and hypersurfaces, are all of interest; * geometric and algebraic coding theory; * finite groups and incidence geometries, as in polar spaces, gener alized polygons and diagram geometries; * algebraic and geometric design theory, in particular designs which have interesting symmetric properties and difference sets, which play an important role, because of their close connections to both Galois geometry and coding theory.
This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2, q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds, H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil boun
This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held."
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
This book gives the complete classification of Moufang polygons, starting from first principles. In particular, it may serve as an introduction to the various important algebraic concepts which arise in this classification including alternative division rings, quadratic Jordan division algebras of degree three, pseudo-quadratic forms, BN-pairs and norm splittings of quadratic forms. This book also contains a new proof of the classification of irreducible spherical buildings of rank at least three based on the observation that all the irreducible rank two residues of such a building are Moufang polygons. In an appendix, the connection between spherical buildings and algebraic groups is recalled. |
![]() ![]() You may like...
Stochastic Approximation and Recursive…
Harold Kushner, G. George Yin
Hardcover
R5,639
Discovery Miles 56 390
Stealing the Gold - A celebration of the…
Paul Goldbart, Nigel Goldenfeld
Hardcover
R4,590
Discovery Miles 45 900
Multi-faceted Deep Learning - Models and…
Jenny Benois-Pineau, Akka Zemmari
Hardcover
R4,935
Discovery Miles 49 350
Event-Triggered Active Disturbance…
Dawei Shi, Yuan Huang, …
Hardcover
R4,120
Discovery Miles 41 200
Machine Learning: Theory and…
C.R. Rao, Venu Govindaraju
Hardcover
|