Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Lie linksbetweentorus and Toroidal arethe complex missing groups any groups such and of Lie as complex pseudoconvexity groups. Manyphenomena groups the of beunderstood thestructure can onlythrough concept cohomologygroups of different behavior ofthe oftoroidal The cohomology complex groups groups. the of their toroidal Lie be characterized can by properties groups - groups in their centers. pearing book. So the oldest have not been treated in a Toroidal systematically groups in it who worked in this field and the mathematician youngest working living aboutthemain results these decidedto a concerning comprehensivesurvey give and to discuss problems. open groups of the torus As the Toroidal are generalization groups. groups non-compact and Grauert. As in the sense ofAndreotti manifolds are convex complex they others have similarbehaviorto Lie someofthem a complextori, complex groups whencec- different with for non-Hausdorff are example cohomology groups, mustbe used. newmethods pletely of is to describe the fundamental The aim of these lecture notes properties the reductiontheorem toroidal As a result ofthe qua- meromorphic groups. basic ends inthethird varieties of interest.Their Abelian are special description MainTheorem. withthe chapter wide atthe - ofSOPHus LIE -wasintroducedtoa This inhonour public theory " 1999. after Lie" in on Conference 100Years Leipzig, July 8-9, Sophus HUMBOLDT wishes to thank the ALEXANDER VON The first-named author FOUNDATION for partial support. December 1998 Hannoverand Toyama, YukitakaAbeandKlaus Kopfermann Contents 1 Introduction ..................................................... of Toroidal 3 1. The Concept Groups ............................. 1.1 and toroidal coordinates 3 Irrationality ........................ Toroidal 3 ........................................... groups 7 Complex homomorphisms .................................. Toroidal coordinates and C*n-q -fibre bundles 9 .................
In the large and thriving field of compact transformation groups an important role has long been played by cohomological methods. This book aims to give a contemporary account of such methods, in particular the applications of ordinary cohomology theory and rational homotopy theory with principal emphasis on actions of tori and elementary abelian p-groups on finite-dimensional spaces. For example, spectral sequences are not used in Chapter 1, where the approach is by means of cochain complexes; and much of the basic theory of cochain complexes needed for this chapter is outlined in an appendix. For simplicity, emphasis is put on G-CW-complexes; the refinements needed to treat more general finite-dimensional (or finitistic) G-spaces are often discussed separately. Subsequent chapters give systematic treatments of the Localization Theorem, applications of rational homotopy theory, equivariant Tate cohomology and actions on Poincaré duality spaces. Many shorter and more specialized topics are included also. Chapter 2 contains a summary of the main definitions and results from Sullivan's version of rational homotopy theory which are used in the book.
From the reviews:"This book (...) defines the boundaries of the subject now called combinatorial group theory. (...)it is a considerable achievement to have concentrated a survey of the subject into 339 pages. This includes a substantial and useful bibliography; (over 1100 (items)). ...the book is a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews, AMS, 1979
The new edition of this best-selling textbook addresses the difficulties that can arise with the mathematics that underpins the study of symmetry, and acknowledges that group theory can be a complex concept for students to grasp. Molecular Symmetry and Group Theory is based around a series of programmes that help students learn at their own pace and enable them to understand the subject fully. Readers are taken through a series of carefully constructed exercises, designed to simplify the mathematics and give them a full understanding of how this relates to the chemistry. The second edition has been revised and expanded and includes a new chapter on the projection operator method. This is used to calculate the form of the normal modes of vibration of a molecule and the normalised wave functions of hybrid orbitals or molecular orbitals.
In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature.
Since the classification of finite simple groups was announced in 1980 the subject has continued to expand opening many new areas of research. This volume contains a collection of papers, both survey and research, arising from the 1990 Durham conference in which the excellent progress of the decade was surveyed and new goals considered. The material is divided into eight sections: sporadic groups; moonshine; local and geometric methods in group theory; geometries and related groups; finite and algebraic groups of Lie type; finite permutation groups; further aspects of Lie groups; related topics. The list of contributors is impressive and the subjects covered include many of the fascinating developments in group theory that have occurred in recent years. It will be an invaluable document for mathematicians working in group theory, combinatorics and geometry.
This volume contains a selection of refereed papers presented in honour of A.M. Macbeath, one of the leading researchers in the area of discrete groups. The subject has been of much current interest of late as it involves the interaction of a number of diverse topics such as group theory, hyperbolic geometry, and complex analysis.
A conversation between Euclid and the ghost of Socrates. . . the paths of the moon and the sun charted by the stone-builders of ancient Europe. . .the Greek ideal of the golden mean by which they measured beauty. . . Combining historical fact with a retelling of ancient myths and legends, this lively and engaging book describes the historical, religious and geographical background that gave rise to mathematics in ancient Egypt, Babylon, China, Greece, India, and the Arab world. Each chapter contains a case study where mathematics is applied to the problems of the era, including the area of triangles and volume of the Egyptian pyramids; the Babylonian sexagesimal number system and our present measure of space and time which grew out of it; the use of the abacus and remainder theory in China; the invention of trigonometry by Arab mathematicians; and the solution of quadratic equations by completing the square developed in India. These insightful commentaries will give mathematicians and general historians a better understanding of why and how mathematics arose from the problems of everyday life, while the author's easy, accessible writing style will open fascinating chapters in the history of mathematics to a wide audience of general readers.
The theory of groups is simultaneously a branch of abstract algebra and the study of symmetry. Designed to support a reader engaged in a first serious group theory course, or a mathematically mature reader approaching the subject for the first time, this book reviews the essentials. It recaps the basic definitions and results, up to and including Lagrange's Theorem, and then continues to explore topics such as the isomorphism theorems and group actions. Later chapters include material on chain conditions and finiteness conditions, free groups and the theory of presentations. In addition, a novel chapter of "entertainments" takes the basic theory and plays with it to obtain an assortment of results that will show a little of what can be done with the theoretical machinery. Adopting the slightly irreverent tone of Geoff Smith's previous book, Introductory Mathematics: Algebra and Analysis, this book is a key reference that will both stimulate and entertain its readers.
This book is a (post)graduate textbook on Lie groups and Lie algebras. Its aim is to give a broad introduction to the field with an emphasis on using differential-geometrical methods, in the spirit of Lie himself. The structure of compact Lie groups is analyzed in terms of the action of the group on itself by conjugation. The book culminates in the classification of the representations of compact Lie groups and in their realization as sections of holomorphic line bundles over flag manifolds. The relations with algebraic and analytic models are also discussed. A review of the required background material is provided in appendices.
This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.
If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.
Representation theory and character theory have proved essential in the study of finite simple groups since their early development by Frobenius. The author begins by presenting the foundations of character theory in a style accessible to advanced undergraduates requiring only a basic knowledge of group theory and general algebra. This theme is then expanded in a self-contained account providing an introduction to the application of character theory to the classification of simple groups. The book follows both strands of the theory: the exceptional characters of Suzuki and Feit and the block character theory of Brauer and includes refinements of original proofs that have become available as the subject has grown. This account will be of value as a textbook for students with some background in group theory, and as a reference for specialists and researchers in the field.
The book, based on a course of lectures by the authors at the Indian Institute of Technology, Guwahati, covers aspects of infinite permutation groups theory and some related model-theoretic constructions. There is basic background in both group theory and the necessary model theory, and the following topics are covered: transitivity and primitivity; symmetric groups and general linear groups; wreatch products; automorphism groups of various treelike objects; model-theoretic constructions for building structures with rich automorphism groups, the structure and classification of infinite primitive Jordan groups (surveyed); applications and open problems. With many examples and exercises, the book is intended primarily for a beginning graduate student in group theory.
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory.
The interaction between ergodic theory and discrete groups has a long history and much work was done in this area by Hedlund, Hopf and Myrberg in the 1930s. There has been a great resurgence of interest in the field, due in large measure to the pioneering work of Dennis Sullivan. Tools have been developed and applied with outstanding success to many deep problems. The ergodic theory of discrete groups has become a substantial field of mathematical research in its own right, and it is the aim of this book to provide a rigorous introduction from first principles to some of the major aspects of the theory. The particular focus of the book is on the remarkable measure supported on the limit set of a discrete group that was first developed by S. J. Patterson for Fuchsian groups, and later extended and refined by Sullivan.
This is the softcover reprint of the English translation of 1975 (available from Springer since 1989) of the first 3 chapters of Bourbaki's 'Groupes et algèbres de Lie'. The first chapter describes the theory of Lie algebras, their derivations, their representations and their enveloping algebras. In Ch. 2, free Lie algebras are introduced in order to discuss the exponential, logarithmic and the Hausdorff series. Ch. 3 deals with the theory of Lie groups over R and C and ultrametric fields. It describes the connections between their local and global properties, and the properties of their Lie algebras. It is one of the very best references on this subject.
Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.
Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.
A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Brou 's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure." The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications.
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996 |
You may like...
Sequences, Groups, and Number Theory
Valerie Berthe, Michel Rigo
Hardcover
R4,944
Discovery Miles 49 440
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,490
Discovery Miles 44 900
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R5,888
Discovery Miles 58 880
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
|