![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
William Burnside [1852-1927] was a scholar of international renown, a colourful figure, and a pure mathematician who established abstract algebra as a subject of serious study in Britain. This edition of Collected Papers, enhanced by a series of critical essays, is of major importance to scholars in group theory and the history of mathematics.
Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Throughout the book, emphasis is placed on concrete examples, often geometrical in nature, so that finite rotation groups and the 17 wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using groups actions on trees. There are more than 300 exercises and approximately 60 illustrations to help develop the student's intuition.
This book gives a proof of Cherlin's conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan's theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2. The first part gives a full introduction to Cherlin's conjecture, including all the key ideas that have been used in the literature to prove some of its special cases. The second part completes the proof by dealing with primitive permutation groups that are almost simple with socle a group of Lie type. A great deal of material concerning properties of primitive permutation groups and almost simple groups is included, and new ideas are introduced. Addressing a hot topic which cuts across the disciplines of group theory, model theory and logic, this book will be of interest to a wide range of readers. It will be particularly useful for graduate students and researchers who need to work with simple groups of Lie type.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange's theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses. To keep the exposition self-contained the book also includes useful general results not only on geodesic orbit manifolds, but also on smooth and Riemannian manifolds, Lie groups and Lie algebras, homogeneous Riemannian manifolds, and compact homogeneous Riemannian spaces. The intended audience is graduate students and researchers whose work involves differential geometry and transformation groups.
This lecture note provides a tutorial review of non-Abelian discrete groups and presents applications to particle physics where discrete symmetries constitute an important principle for model building. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics-particularly model building beyond the standard model-non-Abelian discrete symmetries have been applied particularly to understand the three-generation flavor structure. The non-Abelian discrete symmetries are indeed considered to be the most attractive choice for a flavor sector: Model builders have tried to derive experimental values of quark and lepton masses, mixing angles and CP phases on the assumption of non-Abelian discrete flavor symmetries of quarks and leptons, yet lepton mixing has already been intensively discussed in this context as well. Possible origins of the non-Abelian discrete symmetry for flavors are another topic of interest, as they can arise from an underlying theory, e.g., the string theory or compactification via orbifolding as geometrical symmetries such as modular symmetries, thereby providing a possible bridge between the underlying theory and corresponding low-energy sector of particle physics. The book offers explicit introduction to the group theoretical aspects of many concrete groups, and readers learn how to derive conjugacy classes, characters, representations, tensor products, and automorphisms for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest. Further, CP symmetry and modular symmetry are also presented.
This book is a (post)graduate textbook on Lie groups and Lie algebras. Its aim is to give a broad introduction to the field with an emphasis on using differential-geometrical methods, in the spirit of Lie himself. The structure of compact Lie groups is analyzed in terms of the action of the group on itself by conjugation. The book culminates in the classification of the representations of compact Lie groups and in their realization as sections of holomorphic line bundles over flag manifolds. The relations with algebraic and analytic models are also discussed. A review of the required background material is provided in appendices.
Wavelets analysis--a new and rapidly growing field of research--has been applied to a wide range of endeavors, from signal data analysis (geoprospection, speech recognition, and singularity detection) to data compression (image and voice-signals) to pure mathematics. Written in an accessible, user-friendly style, Wavelets: An Analysis Tool offers a self-contained, example-packed introduction to the subject. Taking into account the continuous transform as well as its discretized version (the ortho-normal basis) the book begins by introducing the continuous wavelets transform in one dimension. It goes on to provide detailed discussions of wavelet analysis of regular functions, tempered distributions, square integrable functions, and the continuous wavelet transform. Throughout, the language of group theory is used to unify various approaches. Profusely illustrated and containing information not available elsewhere, this book is ideal for advanced students and researchers in mathematics, physics, and signal processing engineering.
James E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, "Introduction to Lie Algebras and Representation Theory" (graduate Texts in Mathematics Vol. 9).
This book deals with the characterization of extensions of number fields in terms of the decomposition of prime ideals, and with the group-theoretic questions arising from this number-theoretic problem. One special aspect of this question is the equality of Dedekind zeta functions of different number fields. This is an established problem which was solved for abelian extensions by class field theory, but which was only studied in detail in its general form from around 1970. The basis for the new results was a fruitful exchange between number theory and group theory. Some of the outstanidng results are based on the complete classification of all finite simple groups. This book reports on the great progress achieved in this period. It allows access to the new developments in this part of algebraic number theory and contains a unique blend of number theory and group theory. The results appear for the first time in a monograph and they partially extend the published literature.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
Group theory, originating from algebraic structures in mathematics, has long been a powerful tool in many areas of physics, chemistry and other applied sciences, but it has seldom been covered in a manner accessible to undergraduates. This book from renowned educator Robert Kolenkow introduces group theory and its applications starting with simple ideas of symmetry, through quantum numbers, and working up to particle physics. It features clear explanations, accompanying problems and exercises, and numerous worked examples from experimental research in the physical sciences. Beginning with key concepts and necessary theorems, topics are introduced systematically including: molecular vibrations and lattice symmetries; matrix mechanics; wave mechanics; rotation and quantum angular momentum; atomic structure; and finally particle physics. This comprehensive primer on group theory is ideal for advanced undergraduate topics courses, reading groups, or self-study, and it will help prepare graduate students for higher-level courses.
An Invitation to Representation Theory offers an introduction to groups and their representations, suitable for undergraduates. In this book, the ubiquitous symmetric group and its natural action on polynomials are used as a gateway to representation theory. The subject of representation theory is one of the most connected in mathematics, with applications to group theory, geometry, number theory and combinatorics, as well as physics and chemistry. It can however be daunting for beginners and inaccessible to undergraduates. The symmetric group and its natural action on polynomial spaces provide a rich yet accessible model to study, serving as a prototype for other groups and their representations. This book uses this key example to motivate the subject, developing the notions of groups and group representations concurrently. With prerequisites limited to a solid grounding in linear algebra, this book can serve as a first introduction to representation theory at the undergraduate level, for instance in a topics class or a reading course. A substantial amount of content is presented in over 250 exercises with complete solutions, making it well-suited for guided study.
This book carefully presents a unified treatment of equivariant Poincare duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot-Caratheodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
This book focuses on the Symmetric Informationally Complete quantum measurements (SICs) in dimensions 2 and 3, along with one set of SICs in dimension 8. These objects stand out in ways that have earned them the moniker of "sporadic SICs". By some standards, they are more approachable than the other known SICs, while by others they are simply atypical. The author forays into quantum information theory using them as examples, and the author explores their connections with other exceptional objects like the Leech lattice and integral octonions. The sporadic SICs take readers from the classification of finite simple groups to Bell's theorem and the discovery that "hidden variables" cannot explain away quantum uncertainty. While no one department teaches every subject to which the sporadic SICs pertain, the topic is approachable without too much background knowledge. The book includes exercises suitable for an elective at the graduate or advanced undergraduate level.
This much-needed new book is the first to specifically detail free Lie algebras. Lie polynomials appeared at the turn of the century and were identified with the free Lie algebra by Magnus and Witt some thirty years later. Many recent, important developments have occurred in the field--especially from the point of view of representation theory--that have necessitated a thorough treatment of the subject. This timely book covers all aspects of the field, including characterization of Lie polynomials and Lie series, subalgebras and automorphisms, canonical projections, Hall bases, shuffles and subwords, circular words, Lie representations of the symmetric group, related symmetric functions, descent algebra, and quasisymmetric functions. With its emphasis on the algebraic and combinatorial point of view as well as representation theory, this book will be welcomed by students and researchers in mathematics and theoretical computer science.
K-theory is often considered a complicated `specialist's' theory. This book is an introduction to the basics and provides detailed explanation of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed and then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity.
This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition - with full proofs - of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Aix-Marseille Universite, France Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book introduces recently developed ideas and techniques in semigroup theory to provide a handy reference guide previously unavailable in a single volume. The opening chapter provides sufficient background to enable the reader to follow any of the subsequent chapters, and would by itself be suitable for a first course in semigroup theory. The second chapter gives an account of free inverse semigroups leading to proofs of the McAlister P-theorems. Subsequent chapters have the underlying theme of diagrams and mappings, and the new material includes the theory of biordered sets of Nambooripad and Easdown, the semigroup diagrams of Remmers and Jackson with applications to the one-relator, and other word problems, a short proof of Isbell's Zigzag theorem with applications to epimorphisms and amalgams, together with combinatorial, probabalistic and graphical techniques used to prove results including Schein's Covering Theorem and Howie's Gravity Formula for finite full transformation semigroups. Nearly two hundred exercises serve the dual purpose of illustrating the richness of the subject while allowing the reader to come to grips with the material.
Elliptic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of elliptic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural non-commutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellilptic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.
The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs. |
![]() ![]() You may like...
Diving in Indonesia - The Ultimate Guide…
Sarah Ann Wormald
Paperback
![]()
Acoustical Imaging, v. 23 - Proceedings…
Sidney Lees, Leonard A. Ferrari
Hardcover
R2,657
Discovery Miles 26 570
|