![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. However, gaining familiarity with these groups presents problems for two reasons. First, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Second, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. This volume is suitable for researchers and postgraduates.
The Langlands Program was conceived initially as a bridge between Number Theory and Automorphic Representations, and has now expanded into such areas as Geometry and Quantum Field Theory, tying together seemingly unrelated disciplines into a web of tantalizing conjectures. A new chapter to this grand project is provided in this book. It develops the geometric Langlands Correspondence for Loop Groups, a new approach, from a unique perspective offered by affine Kac-Moody algebras. The theory offers fresh insights into the world of Langlands dualities, with many applications to Representation Theory of Infinite-dimensional Algebras, and Quantum Field Theory. This accessible text builds the theory from scratch, with all necessary concepts defined and the essential results proved along the way. Based on courses taught at Berkeley, the book provides many open problems which could form the basis for future research, and is accessible to advanced undergraduate students and beginning graduate students.
This book addresses the nature of the chemical bond in inorganic and coordination compounds. In particular, it explains how general symmetry rules can describe chemical bond of simple inorganic molecules. Since the complexity of studying even simple molecules requires approximate methods, this book introduces a quantum mechanical treatment taking into account the geometric peculiarities of the chemical compound. In the case of inorganic molecules, a convenient approximation comes from symmetry, which constrains both the electronic energies and the chemical bonds. The book also gives special emphasis on symmetry rules and compares the use of symmetry operators with that of Hamiltonian operators. Where possible, the reactivity of molecules is also rationalized in terms of these symmetry properties. As practical examples, electronic spectroscopy and magnetism give experimental confirmation of the predicted electronic energy levels. Adapted from university lecture course notes, this book is the ideal companion for any inorganic chemistry course dealing with group theory.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, the last few years having seen the resolution of many longstanding conjectures. This volume contains important expositions and original work by some of the main contributors on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory, computer explorations and projective structures. Researchers in these and related areas will find much of interest here from the explosion in the area over recent years, including important and original research from leading names in the field.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This first part of a two-volume set offers a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The authors present this topic from the perspective of linear representations of finite-oriented graphs (quivers) and homological algebra. The self-contained treatment constitutes an elementary, up-to-date introduction to the subject using, on the one hand, quiver-theoretical techniques and, on the other, tilting theory and integral quadratic forms. Key features include many illustrative examples, plus a large number of end-of-chapter exercises. The detailed proofs make this work suitable both for courses and seminars, and for self-study. The volume will be of great interest to graduate students beginning research in the representation theory of algebras and to mathematicians from other fields.
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot-Caratheodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is a comprehensive account of the present state of this theory. As well as providing a connected and self-contained account of the group-theoretical background, it explains in detail how deep methods of number theory and algebraic group theory have been used to achieve some very recent and rather spectacular advances in the subject. Up to now, most of this material has only been available in scattered research journals, and some of it is new. This book is the only unified account of these developments, and will be of interest to mathematicians doing research in algebra, and to postgraduate students studying that subject.
This book explains the basic aspects of symmetry groups as applied to problems in physics and chemistry using an approach pioneered and developed by the author. The symmetry groups and their representations are worked out explicitly, eliminating the undue abstract nature of group theoretical methods. The author has systemized the wealth of knowledge on symmetry groups that has accumulated in the century since Fedrov discovered the 230 space groups. All space groups, unitary as well as antiunitary, are reconstructed based on the algebraic defining relations of the point groups. This work will be of great interest to graduate students and professionals in solid state physics, chemistry, mathematics, geology and those who are interested in magnetic crystal structures.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
The representation theory of symmetric groups is one of the most beautiful, popular, and important parts of algebra with many deep relations to other areas of mathematics, such as combinatorics, Lie theory, and algebraic geometry. Kleshchev describes a new approach to the subject, based on the recent work of Lascoux, Leclerc, Thibon, Ariki, Grojnowski, Brundan, and the author. Much of this work has only appeared in the research literature before. However, to make it accessible to graduate students, the theory is developed from scratch, the only prerequisite being a standard course in abstract algebra. Branching rules are built in from the outset resulting in an explanation and generalization of the link between modular branching rules and crystal graphs for affine Kac-Moody algebras. The methods are purely algebraic, exploiting affine and cyclotomic Hecke algebras. For the first time in book form, the projective (or spin) representation theory is treated along the same lines as linear representation theory. The author is mainly concerned with modular representation theory, although everything works in arbitrary characteristic, and in case of characteristic 0 the approach is somewhat similar to the theory of Okounkov and Vershik, described here in chapter 2. For the sake of transparency, Kleshschev concentrates on symmetric and spin-symmetric groups, though the methods he develops are quite general and apply to a number of related objects. In sum, this unique book will be welcomed by graduate students and researchers as a modern account of the subject.
This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.
This textbook offers an innovative approach to abstract algebra, based on a unified treatment of similar concepts across different algebraic structures. This makes it possible to express the main ideas of algebra more clearly and to avoid unnecessary repetition. The book consists of two parts: The Language of Algebra and Algebra in Action. The unified approach to different algebraic structures is a primary feature of the first part, which discusses the basic notions of algebra at an elementary level. The second part is mathematically more complex, covering topics such as the Sylow theorems, modules over principal ideal domains, and Galois theory. Intended for an undergraduate course or for self-study, the book is written in a readable, conversational style, is rich in examples, and contains over 700 carefully selected exercises.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses. To keep the exposition self-contained the book also includes useful general results not only on geodesic orbit manifolds, but also on smooth and Riemannian manifolds, Lie groups and Lie algebras, homogeneous Riemannian manifolds, and compact homogeneous Riemannian spaces. The intended audience is graduate students and researchers whose work involves differential geometry and transformation groups.
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue. Stabiliser la formule des traces tordue est la methode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adeliques d'un groupe reductif, tordue par un automorphisme, sur les formes automorphes de carre integrable de ce groupe. Cette comprehension se fait en reduisant le probleme, suivant les idees de Langlands, a des groupes plus petits munis d'un certain nombre de donnees auxiliaires; c'est ce que l'on appelle les donnees endoscopiques. L'analogue non tordu a ete resolu par J. Arthur et dans ce livre on suit la strategie de celui-ci. Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la theorie de l'endoscopie tordue developpee par R. Kottwitz et D. Shelstad et par J.-P. Labesse. Ils donnent tous les arguments des demonstrations meme si nombre d'entre eux se tr ouvent deja dans les travaux d'Arthur concernant le cas de la formule des traces non tordue. Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnee des formes automorphes de carre integrable pour les groupes classiques quasi-deployes, c'etait pour les auteurs une des principales motivations pour l'ecrire. Cette partie contient les preuves de la stabilisation geometrique et de la partie spectrale en particulier de la partie discrete de ce terme, ce qui est le point d'aboutissement de ce sujet.
The book consists of articles based on the XXXVII Bialowieza Workshop on Geometric Methods in Physics, 2018. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. This edition of the workshop featured a special session dedicated to Professor Daniel Sternheimer on the occasion of his 80th birthday. The previously unpublished papers present cutting-edge current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past seven years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics comprising a series of advanced lectures for graduate students and early-career researchers. The book also includes abstracts of the five lecture series that were given at the seventh school.
This volume presents modern trends in the area of symmetries and their applications based on contributions to the workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2019. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a large interdisciplinary and interrelated field. The topics covered in this volume from the workshop represent the most modern trends in the field : Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Polylogarithms, and Supersymmetry. They also include Supersymmetric Calogero-type models, Quantum Groups, Deformations, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, and Exceptional Quantum Algebra for the standard model of particle physics This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6-10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
This textbook provides an introduction to representations of general -algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of -algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded -algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensatze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.
This is the second edition of the popular textbook on representation theory of finite groups. The authors have revised the text greatly and included new chapters on Characters of GL(2,q) and Permutations and Characters. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. The character tables of many groups are given, including all groups of order less than 32, and all but one of the simple groups of order less than 1000. Each chapter is accompanied by a variety of exercises, and full solutions to all the exercises are provided at the end of the book.
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians. |
You may like...
Diffractive Optics and Optical…
S. Martellucci, Arthur N. Chester
Hardcover
R4,346
Discovery Miles 43 460
Linear Operators and Matrices - The…
Israel Gohberg, Heinz Langer
Hardcover
R2,445
Discovery Miles 24 450
F Is for French Quarter
Scott Campbell, Tallulah Campbell, …
Hardcover
|