![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This volume contains a selection of refereed papers presented in honour of A.M. Macbeath, one of the leading researchers in the area of discrete groups. The subject has been of much current interest of late as it involves the interaction of a number of diverse topics such as group theory, hyperbolic geometry, and complex analysis.
This monograph is concerned with the interplay between the theory of operator semigroups and spectral theory. The basics on operator semigroups are concisely covered in this self-contained text. Part I deals with the Hille--Yosida and Lumer--Phillips characterizations of semigroup generators, the Trotter--Kato approximation theorem, Kato 's unified treatment of the exponential formula and the Trotter product formula, the Hille--Phillips perturbation theorem, and Stone 's representation of unitary semigroups. Part II explores generalizations of spectral theory 's connection to operator semigroups.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
These volumes contain selected papers presented at the international conference on group theory held in St Andrews in 1989. The themes of the conference were combinatorial and computational group theory; four leading group theorists (J. A. Green, N. D. Gupta, O. H. Kegel and J. G. Thompson) gave courses whose content is reproduced here. Also included are refereed papers presented at the meeting. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its varied connections with other areas of mathematics. These will be essential references for research and postgraduate mathematicians whose work involves group theory.
This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.
The book, based on a course of lectures by the authors at the Indian Institute of Technology, Guwahati, covers aspects of infinite permutation groups theory and some related model-theoretic constructions. There is basic background in both group theory and the necessary model theory, and the following topics are covered: transitivity and primitivity; symmetric groups and general linear groups; wreatch products; automorphism groups of various treelike objects; model-theoretic constructions for building structures with rich automorphism groups, the structure and classification of infinite primitive Jordan groups (surveyed); applications and open problems. With many examples and exercises, the book is intended primarily for a beginning graduate student in group theory.
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
This book is a (post)graduate textbook on Lie groups and Lie algebras. Its aim is to give a broad introduction to the field with an emphasis on using differential-geometrical methods, in the spirit of Lie himself. The structure of compact Lie groups is analyzed in terms of the action of the group on itself by conjugation. The book culminates in the classification of the representations of compact Lie groups and in their realization as sections of holomorphic line bundles over flag manifolds. The relations with algebraic and analytic models are also discussed. A review of the required background material is provided in appendices.
Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.
A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Brou 's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure." The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications.
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
The normal subgroup structure of maximal pro-"p"-subgroups of rational points of algebraic groups over the "p"-adics and their characteristic "p" analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and "p" are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions.
In this book, developed from courses taught at the University of London, the author aims to show the value of using topological methods in combinatorial group theory. The topological material is given in terms of the fundamental groupoid, giving results and proofs that are both stronger and simpler than the traditional ones. Several chapters deal with covering spaces and complexes, an important method, which is then applied to yield the major Schreier and Kurosh subgroup theorems. The author presents a full account of Bass-Serre theory and discusses the word problem, in particular, its unsolvability and the Higman Embedding Theorem. Included for completeness are the relevant results of computability theory.
The interaction between ergodic theory and discrete groups has a long history and much work was done in this area by Hedlund, Hopf and Myrberg in the 1930s. There has been a great resurgence of interest in the field, due in large measure to the pioneering work of Dennis Sullivan. Tools have been developed and applied with outstanding success to many deep problems. The ergodic theory of discrete groups has become a substantial field of mathematical research in its own right, and it is the aim of this book to provide a rigorous introduction from first principles to some of the major aspects of the theory. The particular focus of the book is on the remarkable measure supported on the limit set of a discrete group that was first developed by S. J. Patterson for Fuchsian groups, and later extended and refined by Sullivan.
This is a new in paperback second edition of the acclaimed first edition. The second edition includes a new chapter on a family of symmetric functions depending rationally on two parameters and also a chapter on zonal polynomials. From reviews of the first edition: 'Despite the amount of material of such great potential interest to mathematicians...the theory of symmetric functions remains all but unknown to the persons it is most likely to benefit...Hopefully this beautifully written book will put an end to this state of affairs...I have no doubt that this book will become the definitive reference on symmetric functions and their applications.' Bulletin of the AMS '...In addition to providing a self-contained and coherent account of well-known and classical work, there is a great deal which is original. The book is dotted with gems, both old and new...It is a substantial and valuable volume and will be regarded as the authoritative source which has been long awaited in this subject.' LMS book reviews From reviews of the second edition: 'Evidently this second edition will be the source and reference book for symmetric functions in the next future.' Zentralblatt fuer Mathematik
Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.
This is the softcover reprint of the English translation of 1975 (available from Springer since 1989) of the first 3 chapters of Bourbaki's 'Groupes et algèbres de Lie'. The first chapter describes the theory of Lie algebras, their derivations, their representations and their enveloping algebras. In Ch. 2, free Lie algebras are introduced in order to discuss the exponential, logarithmic and the Hausdorff series. Ch. 3 deals with the theory of Lie groups over R and C and ultrametric fields. It describes the connections between their local and global properties, and the properties of their Lie algebras. It is one of the very best references on this subject.
From the reviews: "This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." (American Scientist) "By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..." (Math. Reviews)
Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.
Starting from basic knowledge of nilpotent (Lie) groups, an algebraic theory of almost-Bieberbach groups, the fundamental groups of infra-nilmanifolds, is developed. These are a natural generalization of the well known Bieberbach groups and many results about ordinary Bieberbach groups turn out to generalize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
This book is addressed to mathematicians and advanced students interested in buildings, groups and their interplay. Its first part introduces - presupposing good knowledge of ordinary buildings - the theory of twin buildings, discusses its group-theoretic background (twin BN-pairs), investigates geometric aspects of twin buildings and applies them to determine finiteness properties of certain S-arithmetic groups. This application depends on topological properties of some subcomplexes of spherical buildings. The background of this problem, some examples and the complete solution for all "sufficiently large" classical buildings are covered in detail in the second part of the book.
This book has been written to introduce readers to group theory and its ap plications in atomic physics, molecular physics, and solid-state physics. The first Japanese edition was published in 1976. The present English edi tion has been translated by the authors from the revised and enlarged edition of 1980. In translation, slight modifications have been made in. Chaps. 8 and 14 to update and condense the contents, together with some minor additions and improvements throughout the volume. The authors cordially thank Professor J. L. Birman and Professor M. Car dona, who encouraged them to prepare the English translation. Tokyo, January 1990 T. Inui . Y. Tanabe Y. Onodera Preface to the Japanese Edition As the title shows, this book has been prepared as a textbook to introduce readers to the applications of group theory in several fields of physics. Group theory is, in a nutshell, the mathematics of symmetry. It has three main areas of application in modern physics. The first originates from early studies of crystal morphology and constitutes a framework for classical crystal physics. The analysis of the symmetry of tensors representing macroscopic physical properties (such as elastic constants) belongs to this category. The sec ond area was enunciated by E. Wigner (1926) as a powerful means of handling quantum-mechanical problems and was first applied in this sense to the analysis of atomic spectra. Soon, H."
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.
Symmetries in Physics presents the fundamental theories of symmetry, together with many examples of applications taken from several different branches of physics. Emphasis is placed on the theory of group representations and on the powerful method of projection operators. The excercises are intended to stimulate readers to apply the techniques demonstrated in the text. |
You may like...
p-Adic Methods and Their Applications
Andrew J. Baker, Roger J. Plymen
Hardcover
R2,001
Discovery Miles 20 010
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,682
Discovery Miles 26 820
|