Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Here is a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These results are applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have recently been intensively studied. The focus is on the interplay between combinatorics and algebraic structure. Mathematical physicists will find this work interesting for its attention to applications of the Yang-Baxter equation.
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. Written by a renowned expert, this book will convince all interested readers of the importance of symmetry in science.
This book is the first to systematically explore the classification and function theory of complex homogeneous bounded domains. The Siegel domains are discussed in detail, and proofs are presented. Using the normal Siegel domains to realize the homogeneous bounded domains, we can obtain more property of the geometry and the function theory on homogeneous bounded domains.
This introduction to the representation theory of compact Lie groups follows Herman Weyl 's original approach. It discusses all aspects of finite-dimensional Lie theory, consistently emphasizing the groups themselves. Thus, the presentation is more geometric and analytic than algebraic. It is a useful reference and a source of explicit computations. Each section contains a range of exercises, and 24 figures help illustrate geometric concepts.
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
The authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II." The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.
A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields."
How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.
Trust is a crucial facet of social functioning that feeds into our relationships with individuals, groups, and organizations. The Psychology of Interpersonal Trust: Theory and Research examines existing theories, frameworks, and models of trust as well as the methods and designs for examining it. To fully examine how interpersonal trust impacts our lives, Rotenberg reviews the many essential topics trust relates to, including close relationships, trust games, behavioural trust, and trust development. Designed to encourage researchers to recognize the links between different approaches to trust, this book begins with an overview of the different approaches to interpersonal trust and a description of the methods used to investigate it. Following on from this, each chapter introduces a new subtopic or context, including lying, adjustment, socialization, social media, politics, and health. Each subtopic begins with a short monologue (to provide a personal perspective) and covers basic theory and research. Rotenberg's applied focus demonstrates the relevance of interpersonal trust and highlights the issues and problems people face in contemporary society. This is essential reading for students, researchers, and academics in social psychology, especially those with a specific interest in the concept of trust.
The purpose of the book is to take stock of the situation
concerning Algebra via Category Theory in the last fifteen years,
where the new and synthetic notions of Mal'cev, protomodular,
homological and semi-abelian categories emerged. These notions
force attention on the fibration of points and allow a unified
treatment of the main algebraic: homological lemmas, Noether
isomorphisms, commutator theory.
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world s leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions:
This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
This first part of a two-volume set offers a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The authors present this topic from the perspective of linear representations of finite-oriented graphs (quivers) and homological algebra. The self-contained treatment constitutes an elementary, up-to-date introduction to the subject using, on the one hand, quiver-theoretical techniques and, on the other, tilting theory and integral quadratic forms. Key features include many illustrative examples, plus a large number of end-of-chapter exercises. The detailed proofs make this work suitable both for courses and seminars, and for self-study. The volume will be of great interest to graduate students beginning research in the representation theory of algebras and to mathematicians from other fields.
A. Figa Talamanca: Random Fourier series on compact groups.- S. Helgason: Representations of semisimple Lie groups.- H. Jacquet: Representations des groupes lineaires p-adiques.- G.W. Mackey: Infinite-dimensional group representations and their applications.
R.C. Bose: Graphs and designs.- R.H. Bruck: Construction problems in finite projective spaces.- R.H.F. Denniston: Packings of PG(3, q).- J. Doyen: Recent results on Steiner triple systems.- H. L neburg: Gruppen und endliche projektive Ebenen.- J.A. Thas: 4-gonal configurations.- H.P. Young: Affine triple systems.
Over last decades low-dimensional materials are in focus of physics and chemistry as well as of material and other natural sciences. Like Vitaly Ginzburg has foreseen 30 years ago, low dimensionality offers physical phenomena and properties unseen in three-dimensional world. To see how thin ?lms and monomolecular layers realize such a prediction it suf?ces only to observe intensity of research devoted to recently synthesized graphene. Still, quasi-one-dimensional compounds are over long period established as the origin of the most important and most interesting discoveries of material science and solid state physics. To mention only deoxyribonucleic acid, the most important molecule in nature, and diversity of nanotubes and nanowires, the cornerstones of the present and future nanotechnology. Line groups, describing symmetry of quasi-one-dimensional materials, offer the deepest insight to their characteristic properties. Underlying many of the laws, they are very useful, but far from simple. This book is intended to explain them, their properties, and their most common applications. In particular, it is important to understand that the line groups are much wider class of symmetries than the well-known rod groups. While the latter describe only translationally periodical objects, line groups include symmetries of incommensurate periodical structures.
Drawing on psychological and sociological perspectives as well as quantitative and qualitative data, Identity and Interethnic Marriage in the United States considers the ways the self and social identity are linked to the dynamics of interethnic marriage. Bringing together the classic theoretical contributions of George Herbert Mead, Erving Goffman, and Erik Erikson with contemporary research on ethnic identity inspired by Jean Phinney, this book argues that the self and social identity-especially ethnic identity-are reflected in individuals' complex journey from singlehood to interethnic marriage within the United States.
Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.
toComplexRe ectionGroups and Their Braid Groups 123 Michel Broue Universite Paris Diderot Paris 7 UFR de Mathematiques 175 Rue du Chevaleret 75013 Paris France broue@math. jussieu. fr ISBN: 978-3-642-11174-7 e-ISBN: 978-3-642-11175-4 DOI: 10. 1007/978-3-642-11175-4 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2009943837 Mathematics Subject Classi cation (2000): 20, 13, 16, 55 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro lm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of aspeci c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover illustration: c Anouk Grinberg Cover design: SPi Publisher Services Printed on acid-free paper springer. com Preface Weyl groups are ?nite groups acting as re?ection groups on rational vector spaces. It iswellknownthat theserationalre?ectiongroupsappearas"ske- tons" of many important mathematical objects: algebraic groups, Hecke algebras, Artin-Tits braid groups, etc."
In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs (-expanders-). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related."
"The book is largely self-contained...There is a nice introduction to symplectic geometry and a charming exposition of equivariant K-theory. Both are enlivened by examples related to groups...An attractive feature is the attempt to convey some informal wisdom rather than only the precise definitions. As a number of results are] due to the authors, one finds some of the original excitement. This is the only available introduction to geometric representation theory...it has already proved successful in introducing a new generation to the subject." (Bulletin of the AMS)
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue. Stabiliser la formule des traces tordue est la methode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adeliques d'un groupe reductif, tordue par un automorphisme, sur les formes automorphes de carre integrable de ce groupe. Cette comprehension se fait en reduisant le probleme, suivant les idees de Langlands, a des groupes plus petits munis d'un certain nombre de donnees auxiliaires; c'est ce que l'on appelle les donnees endoscopiques. L'analogue non tordu a ete resolu par J. Arthur et dans ce livre on suit la strategie de celui-ci. Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la theorie de l'endoscopie tordue developpee par R. Kottwitz et D. Shelstad et par J.-P. Labesse. Ils donnent tous les arguments des demonstrations meme si nombre d'entre eux se tr ouvent deja dans les travaux d'Arthur concernant le cas de la formule des traces non tordue. Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnee des formes automorphes de carre integrable pour les groupes classiques quasi-deployes, c'etait pour les auteurs une des principales motivations pour l'ecrire. Cette partie contient les preuves de la stabilisation geometrique et de la partie spectrale en particulier de la partie discrete de ce terme, ce qui est le point d'aboutissement de ce sujet.
This book is a collection of articles, some introductory, some extended surveys, and some containing previously unpublished research, on a range of topics linking infinite permutation group theory and model theory. Topics covered include: oligomorphic permutation groups and omega-categorical structures; totally categorical structures and covers; automorphism groups of recursively saturated structures; Jordan groups; Hrushovski's constructions of pseudoplanes; permutation groups of finite Morley rank; applications of permutation group theory to models of set theory without the axiom of choice. There are introductory chapters by the editors on general model theory and permutation theory, recursively saturated structures, and on groups of finite Morley rank. The book is almost self-contained, and should be useful to both a beginning postgraduate student meeting the subject for the first time, and to an active researcher from either of the two main fields looking for an overview of the subject. |
You may like...
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,821
Discovery Miles 28 210
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R5,888
Discovery Miles 58 880
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,490
Discovery Miles 44 900
Computation and Combinatorics in…
Elena Celledoni, Giulia Di Nunno, …
Hardcover
R4,961
Discovery Miles 49 610
|