![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Operational Quantum Theory II is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of the objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically relativistic quantum field theory is developed the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. This book deals with the operational concepts of relativistic space time, the Lorentz and Poincare group operations and their unitary representations, particularly the elementary articles. Also discussed are eigenvalues and invariants for non-compact operations in general as well as the harmonic analysis of noncompact nonabelian Lie groups and their homogeneous spaces. In addition to the operational formulation of the standard model of particle interactions, an attempt is made to understand the particle spectrum with the masses and coupling constants as the invariants and normalizations of a tangent representation structure of a an homogeneous space time model. Operational Quantum Theory II aims to understand more deeply on an operational basis what one is working with in relativistic quantum field theory, but also suggests new solutions to previously unsolved problems.
Ce travail en deux volumes donne la preuve de la stabilisation de la formule des trace tordue. Stabiliser la formule des traces tordue est la methode la plus puissante connue actuellement pour comprendre l'action naturelle du groupe des points adeliques d'un groupe reductif, tordue par un automorphisme, sur les formes automorphes de carre integrable de ce groupe. Cette comprehension se fait en reduisant le probleme, suivant les idees de Langlands, a des groupes plus petits munis d'un certain nombre de donnees auxiliaires; c'est ce que l'on appelle les donnees endoscopiques. L'analogue non tordu a ete resolu par J. Arthur et dans ce livre on suit la strategie de celui-ci. Publier ce travail sous forme de livre permet de le rendre le plus complet possible. Les auteurs ont repris la theorie de l'endoscopie tordue developpee par R. Kottwitz et D. Shelstad et par J.-P. Labesse. Ils donnent tous les arguments des demonstrations meme si nombre d'entre eux se trouvent deja dans les travaux d'Arthur concernant le cas de la formule des traces non tordue. Ce travail permet de rendre inconditionnelle la classification que J. Arthur a donnee des formes automorphes de carre integrable pour les groupes classiques quasi-deployes, c'etait pour les auteurs une des principales motivations pour l'ecrire. Cette premiere partie comprend les chapitres preparatoires (I-V).
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
The volume is a collection of refereed research papers on infinite dimensional groups and manifolds in mathematics and quantum physics. Topics covered are: new classes of Lie groups of mappings, the Burgers equation, the Chern--Weil construction in infinite dimensions, the hamiltonian approach to quantum field theory, and different aspects of large N limits ranging from approximation methods in quantum mechanics to modular forms and string/gauge theory duality. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of important themes of research at the forefront of mathematics and theoretical physics.
This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.
Finite Coxeter groups and related structures arise naturally in several branches of mathematics, for example, Lie algebras or theory of knots and links. This is the first book which develops the character theory of finite Coxeter groups and Iwahori-Hecke algebras in a systematic way, ranging from classical results to recent developments.
An important monograph summarising the development of a classification system fo finite p-groups.
Commutative Algebra, Singularities and Computer Algebra presents current trends in commutative algebra, algebraic combinatorics, singularity theory and computer algebra, and highlights the interaction between these disciplines. Contributions by leading international mathematicians thoroughly discuss topics in: modules theory, integrally closed ideals and determinantal ideals, singularities in projective spaces and Castelnuovo-Mumford regularity, Groebner and SAGBI basis, and the use of the computer packages Bergman, CoCoA and SINGULAR.
This book systematically develops the theory of continuous representations on p-adic Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive p-adic groups on p-adic Banach spaces, explain the duality theory of Schneider and Teitelbaum, and demonstrate its applications to continuous principal series. Written to be accessible to graduate students, the book gives a comprehensive introduction to the necessary tools, including Iwasawa algebras, p-adic measures and distributions, p-adic functional analysis, reductive groups, and smooth and algebraic representations. Part 1 culminates with the duality between Banach space representations and Iwasawa modules. This duality is applied in Part 2 for studying the intertwining operators and reducibility of the continuous principal series on p-adic Banach spaces. This monograph is intended to serve both as a reference book and as an introductory text for graduate students and researchers entering the area.
Anyone who has studied "abstract algebra" and linear algebra as an undergraduate can understand this book. This edition has been completely revised and reorganized, without however losing any of the clarity of presentation that was the hallmark of the previous editions.The first six chapters provide ample material for a first course: beginning with the basic properties of groups and homomorphisms, topics covered include Lagrange's theorem, the Noether isomorphism theorems, symmetric groups, G-sets, the Sylow theorems, finite Abelian groups, the Krull-Schmidt theorem, solvable and nilpotent groups, and the Jordan-Holder theorem.The middle portion of the book uses the Jordan-Holder theorem to organize the discussion of extensions (automorphism groups, semidirect products, the Schur-Zassenhaus lemma, Schur multipliers) and simple groups (simplicity of projective unimodular groups and, after a return to G-sets, a construction of the sporadic Mathieu groups).
This self-contained monograph is the first to feature the intersection of the structure theory of noncommutative associative algebras and the algorithmic aspect of Groebner basis theory. A double filtered-graded transfer of data in using noncommutative Groebner bases leads to effective exploitation of the solutions to several structural-computational problems, e.g., an algorithmic recognition of quadric solvable polynomial algebras, computation of GK-dimension and multiplicity for modules, and elimination of variables in noncommutative setting. All topics included deal with algebras of (q-)differential operators as well as some other operator algebras, enveloping algebras of Lie algebras, typical quantum algebras, and many of their deformations.
The present book is devoted to a study of relative Prüfer rings and Manis valuations, with an eye to application in real and p-adic geometry. If one wants to expand on the usual algebraic geometry over a non-algebraically closed base field, e.g. a real closed field or p-adically closed field, one typically meets lots of valuation domains. Usually they are not discrete and hence not noetherian. Thus, for a further develomemt of real algebraic and real analytic geometry in particular, and certainly also rigid analytic and p-adic geometry, new chapters of commutative algebra are needed, often of a non-noetherian nature. The present volume presents one such chapter.
The study of the symmetric groups forms one of the basic building blocks of modern group theory. This book is the first completely detailed and self-contained presentation of the wealth of information now known on the projective representations of the symmetric and alternating groups. Prerequisites are a basic familiarity with the elementary theory of linear representations and a modest background in modern algebra. The authors have taken pains to ensure that all the relevant algebraic and combinatoric tools are clearly explained in such a way as to make the book suitable for graduate students and research workers. After the pioneering work of Issai Schur, little progress was made for half a century on projective representations, despite considerable activity on the related topic of linear representations. However, in the last twenty years important new advances have spurred further research. This book develops both the early theory of Schur and then describes the key advances that the subject has seen since then. In particular the theory of Q-functions and skew Q-functions is extensively covered which is central to the development of the subject.
Rings and Fields provides an accessible introduction to rings and fields that will give the reader an appreciation of the power of algebraic techniques to handle diverse and difficult problems. A review of the prerequisite mathematics is given at the start of the book. Dr Ellis presents his ideas clearly and practically. Rather than presenting theory in abstract terms, chapters begin by introducing a problem and then go on to develop the necessary algebraic techniques for its solution in a purposeful, lucid manner, using concrete mathematical and non-mathematical examples. Although prior knowledge of group theory is unnecessary to understand the rest of the book, for those interested there is a chapter which states the axiom for a group and proves the group theoretic results needed in Galois theory.
The book contains the first systematic exposition of the current known theory of K-loops, as well as some new material. In particular, big classes of examples are constructed. The theory for sharply 2-transitive groups is generalized to the theory of Frobenius groups with many involutions. A detailed discussion of the relativistic velocity addition based on the author's construction of K-loops from classical groups is also included. The first chapters of the book can be used as a text, the later chapters are research notes, and only partially suitable for the classroom. The style is concise, but complete proofs are given. The prerequisites are a basic knowledge of algebra such as groups, fields, and vector spaces with forms.
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
This book consists essentially of notes which were written for an Advanced Course on Classifying Spaces and Cohomology of Groups. The course took place at the Centre de Recerca Mathematica (CRM) in Bellaterra from May 27 to June 2, 1998 and was part of an emphasis semester on Algebraic Topology. It consisted of two parallel series of 6 lectures of 90 minutes each and was intended as an introduction to new homotopy theoretic methods in group cohomology. The first part of the book is concerned with methods of decomposing the classifying space of a finite group into pieces made of classifying spaces of appropriate subgroups. Such decompositions have been used with great success in the last 10-15 years in the homotopy theory of classifying spaces of compact Lie groups and p-compact groups in the sense of Dwyer and Wilkerson. For simplicity the emphasis here is on finite groups and on homological properties of various decompositions known as centralizer resp. normalizer resp. subgroup decomposition. A unified treatment of the various decompositions is given and the relations between them are explored. This is preceeded by a detailed discussion of basic notions such as classifying spaces, simplicial complexes and homotopy colimits.
This text offers a clear, efficient exposition of Galois Theory with complete proofs and exercises. Topics include: cubic and quartic formulas; Fundamental Theory of Galois Theory; insolvability of the quintic; Galois's Great Theorem (solvability by radicals of a polynomial is equivalent to solvability of its Galois Group); and computation of Galois groups of cubics and quartics. There are appendices on group theory, ruler-compass constructions, and the early history of Galois Theory. This book provides a concise introduction to Galois Theory suitable for first-year graduate students, either as a text for a course or for study outside the classroom. This new edition has been completely rewritten in an attempt to make proofs clearer by providing more details. The book now begins with a short section on symmetry groups of polygons in the plane, for there is an analogy between polygons and their symmetry groups and polynomials and their Galois groups; this analogy can serve as a guide by helping readers organize the various field theoretic definitions and constructions. The exposition has been reorganized so that the discussion of solvability by radicals now appears later and several new theorems not found in the first edition are included (e.g., Casus Irreducibilis).
Lie linksbetweentorus and Toroidal arethe complex missing groups any groups such and of Lie as complex pseudoconvexity groups. Manyphenomena groups the of beunderstood thestructure can onlythrough concept cohomologygroups of different behavior ofthe oftoroidal The cohomology complex groups groups. the of their toroidal Lie be characterized can by properties groups - groups in their centers. pearing book. So the oldest have not been treated in a Toroidal systematically groups in it who worked in this field and the mathematician youngest working living aboutthemain results these decidedto a concerning comprehensivesurvey give and to discuss problems. open groups of the torus As the Toroidal are generalization groups. groups non-compact and Grauert. As in the sense ofAndreotti manifolds are convex complex they others have similarbehaviorto Lie someofthem a complextori, complex groups whencec- different with for non-Hausdorff are example cohomology groups, mustbe used. newmethods pletely of is to describe the fundamental The aim of these lecture notes properties the reductiontheorem toroidal As a result ofthe qua- meromorphic groups. basic ends inthethird varieties of interest.Their Abelian are special description MainTheorem. withthe chapter wide atthe - ofSOPHus LIE -wasintroducedtoa This inhonour public theory " 1999. after Lie" in on Conference 100Years Leipzig, July 8-9, Sophus HUMBOLDT wishes to thank the ALEXANDER VON The first-named author FOUNDATION for partial support. December 1998 Hannoverand Toyama, YukitakaAbeandKlaus Kopfermann Contents 1 Introduction ..................................................... of Toroidal 3 1. The Concept Groups ............................. 1.1 and toroidal coordinates 3 Irrationality ........................ Toroidal 3 ........................................... groups 7 Complex homomorphisms .................................. Toroidal coordinates and C*n-q -fibre bundles 9 .................
This book provides a modern introduction to the representation theory of finite groups. Now in its second edition, the authors have revised the text and added much new material. The theory is developed in terms of modules, since this is appropriate for more advanced work, but considerable emphasis is placed upon constructing characters. Included here are the character tables of all groups of order less than 32, and all simple groups of order less than 1000. Applications covered include Burnside's paqb theorem, the use of character theory in studying subgroup structure and permutation groups, and how to use representation theory to investigate molecular vibration. Each chapter features a variety of exercises, with full solutions provided at the end of the book. This will be ideal as a course text in representation theory, and in view of the applications, will be of interest to chemists and physicists as well as mathematicians.
From the reviews:"This book (...) defines the boundaries of the subject now called combinatorial group theory. (...)it is a considerable achievement to have concentrated a survey of the subject into 339 pages. This includes a substantial and useful bibliography; (over 1100 (items)). ...the book is a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews, AMS, 1979
A conversation between Euclid and the ghost of Socrates. . . the paths of the moon and the sun charted by the stone-builders of ancient Europe. . .the Greek ideal of the golden mean by which they measured beauty. . . Combining historical fact with a retelling of ancient myths and legends, this lively and engaging book describes the historical, religious and geographical background that gave rise to mathematics in ancient Egypt, Babylon, China, Greece, India, and the Arab world. Each chapter contains a case study where mathematics is applied to the problems of the era, including the area of triangles and volume of the Egyptian pyramids; the Babylonian sexagesimal number system and our present measure of space and time which grew out of it; the use of the abacus and remainder theory in China; the invention of trigonometry by Arab mathematicians; and the solution of quadratic equations by completing the square developed in India. These insightful commentaries will give mathematicians and general historians a better understanding of why and how mathematics arose from the problems of everyday life, while the author's easy, accessible writing style will open fascinating chapters in the history of mathematics to a wide audience of general readers.
The theory of groups is simultaneously a branch of abstract algebra and the study of symmetry. Designed to support a reader engaged in a first serious group theory course, or a mathematically mature reader approaching the subject for the first time, this book reviews the essentials. It recaps the basic definitions and results, up to and including Lagrange's Theorem, and then continues to explore topics such as the isomorphism theorems and group actions. Later chapters include material on chain conditions and finiteness conditions, free groups and the theory of presentations. In addition, a novel chapter of "entertainments" takes the basic theory and plays with it to obtain an assortment of results that will show a little of what can be done with the theoretical machinery. Adopting the slightly irreverent tone of Geoff Smith's previous book, Introductory Mathematics: Algebra and Analysis, this book is a key reference that will both stimulate and entertain its readers.
Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algebraic geometry. To help beginners, the essential ideals from algebraic geometry are treated from scratch. Appendices on homological algebra, multilinear algebra and several other useful topics help to make the book relatively self- contained. Novel results and presentations are scattered throughout the text.
This book addresses both probabilists working on diffusion processes and analysts interested in linear parabolic partial differential equations with singular coefficients. The central question discussed is whether a given diffusion operator, i.e., a second order linear differential operator without zeroth order term, which is a priori defined on test functions over some (finite or infinite dimensional) state space only, uniquely determines a strongly continuous semigroup on a corresponding weighted Lp space. Particular emphasis is placed on phenomena causing non-uniqueness, as well as on the relation between different notions of uniqueness appearing in analytic and probabilistic contexts. |
![]() ![]() You may like...
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,709
Discovery Miles 47 090
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R6,177
Discovery Miles 61 770
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,298
Discovery Miles 32 980
Handbook of Geometry and Topology of…
Jose Luis Cisneros-Molina, Dung Trang Le, …
Hardcover
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
|