![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations.
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
As K. Nomizu has justly noted [K. Nomizu, 56], Differential Geometry ever will be initiating newer and newer aspects of the theory of Lie groups. This monograph is devoted to just some such aspects of Lie groups and Lie algebras. New differential geometric problems came into being in connection with so called subsymmetric spaces, subsymmetries, and mirrors introduced in our works dating back to 1957 [L.V. Sabinin, 58a,59a,59b]. In addition, the exploration of mirrors and systems of mirrors is of interest in the case of symmetric spaces. Geometrically, the most rich in content there appeared to be the homogeneous Riemannian spaces with systems of mirrors generated by commuting subsymmetries, in particular, so called tri-symmetric spaces introduced in [L.V. Sabinin, 61b]. As to the concrete geometric problem which needs be solved and which is solved in this monograph, we indicate, for example, the problem of the classification of all tri-symmetric spaces with simple compact groups of motions. Passing from groups and subgroups connected with mirrors and subsymmetries to the corresponding Lie algebras and subalgebras leads to an important new concept of the involutive sum of Lie algebras [L.V. Sabinin, 65]. This concept is directly concerned with unitary symmetry of elementary par- cles (see [L.V. Sabinin, 95,85] and Appendix 1). The first examples of involutive (even iso-involutive) sums appeared in the - ploration of homogeneous Riemannian spaces with and axial symmetry. The consideration of spaces with mirrors [L.V. Sabinin, 59b] again led to iso-involutive sums.
This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook," namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas."
Our motivation for gathering the material for this book over aperiod of seven years has been to unify and simplify ideas wh ich appeared in a sizable number of re search articles during the past two decades. More specifically, it has been our aim to provide the categorical foundations for extensive work that was published on the epimorphism- and cowellpoweredness problem, predominantly for categories of topological spaces. In doing so we found the categorical not ion of closure operators interesting enough to be studied for its own sake, as it unifies and describes other significant mathematical notions and since it leads to a never-ending stream of ex amples and applications in all areas of mathematics. These are somewhat arbitrarily restricted to topology, algebra and (a small part of) discrete mathematics in this book, although other areas, such as functional analysis, would provide an equally rich and interesting supply of examples. We also had to restrict the themes in our theoretical exposition. In spite of the fact that closure operators generalize the uni versal closure operations of abelian category theory and of topos- and sheaf theory, we chose to mention these aspects only en passant, in favour of the presentation of new results more closely related to our original intentions. We also needed to refrain from studying topological concepts, such as compactness, in the setting of an arbitrary closure-equipped category, although this topic appears prominently in the published literature involving closure operators."
This comprehensive, encyclopedic text in four parts aims to give the reader - from the graduate student to the researcher/practitioner - a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.
In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967].
These two volumes constitute the Proceedings of the Conference Moshe Flato, 1999'. Their spectrum is wide but the various areas covered are, in fact, strongly interwoven by a common denominator, the unique personality and creativity of the scientist in whose honor the Conference was held, and the far-reaching vision that underlies his scientific activity. With these two volumes, the reader will be able to take stock of the present state of the art in a number of subjects at the frontier of current research in mathematics, mathematical physics, and physics. Volume I is prefaced by reminiscences of and tributes to Flato's life and work. It also includes a section on the applications of sciences to insurance and finance, an area which was of interest to Flato before it became fashionable. The bulk of both volumes is on physical mathematics, where the reader will find these ingredients in various combinations, fundamental mathematical developments based on them, and challenging interpretations of physical phenomena. Audience: These volumes will be of interest to researchers and graduate students in a variety of domains, ranging from abstract mathematics to theoretical physics and other applications. Some parts will be accessible to proficient undergraduate students, and even to persons with a minimum of scientific knowledge but enough curiosity."
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held."
Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra.
About 60 years ago, R. Brauer introduced "block theory"; his
purpose was to study the group algebra kG of a finite group G over
a field k of nonzero characteristic p: any indecomposable two-sided
ideal that also is a direct summand of kG determines a
G-block. The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter."
Lattice-valued Logic aims at establishing the logical foundation for uncertain information processing routinely performed by humans and artificial intelligence systems. In this textbook for the first time a general introduction on lattice-valued logic is given. It systematically summarizes research from the basic notions up to recent results on lattice implication algebras, lattice-valued logic systems based on lattice implication algebras, as well as the corresponding reasoning theories and methods. The book provides the suitable theoretical logical background of lattice-valued logic systems and supports newly designed intelligent uncertain-information-processing systems and a wide spectrum of intelligent learning tasks.
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
The aim of this book is to extend the understanding of the fundamental role of generalizations of Lie and related non-commutative and non-associative structures in Mathematics and Physics. This is a thematic volume devoted to the interplay between several rapidly exp- ding research ?elds in contemporary Mathematics and Physics, such as generali- tions of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, n- commutative geometry and applications in Physics and beyond. The speci?c ?elds covered by this volume include: * Applications of Lie, non-associative and non-commutative associative structures to generalizations of classical and quantum mechanics and non-linear integrable systems, operadic and group theoretical methods; * Generalizations and quasi-deformations of Lie algebras such as color and super Lie algebras, quasi-Lie algebras, Hom-Lie algebras, in?nite-dimensional Lie algebras of vector ?elds associated to Riemann surfaces, quasi-Lie algebras of Witt type and their central extensions and deformations important for in- grable systems, for conformal ? eld theory and for string theory; * Non-commutative deformation theory, moduli spaces and interplay with n- commutativegeometry,algebraicgeometryandcommutativealgebra,q-deformed differential calculi and extensions of homological methods and structures; * Crossed product algebras and actions of groups and semi-groups, graded rings and algebras, quantum algebras, twisted generalizations of coalgebras and Hopf algebra structures such as Hom-coalgebras, Hom-Hopf algebras, and super Hopf algebras and their applications to bosonisation, parastatistics, parabosonic and parafermionic algebras, orthoalgebas and root systems in quantum mechanics;
The mathematical theory of control became a ?eld of study half a century ago in attempts to clarify and organize some challenging practical problems and the methods used to solve them. It is known for the breadth of the mathematics it uses and its cross-disciplinary vigor. Its literature, which can befoundinSection93ofMathematicalReviews, wasatonetimedominatedby the theory of linear control systems, which mathematically are described by linear di?erential equations forced by additive control inputs. That theory led to well-regarded numerical and symbolic computational packages for control analysis and design. Nonlinear control problems are also important; in these either the - derlying dynamical system is nonlinear or the controls are applied in a n- additiveway.Thelastfourdecadeshaveseenthedevelopmentoftheoretical work on nonlinear control problems based on di?erential manifold theory, nonlinear analysis, and several other mathematical disciplines. Many of the problems that had been solved in linear control theory, plus others that are new and distinctly nonlinear, have been addressed; some resulting general de?nitions and theorems are adapted in this book to the bilinear case
This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow 's group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits main theorem on buildings of spherical type.
Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups
Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Throughout the book, emphasis is placed on concrete examples, often geometrical in nature, so that finite rotation groups and the 17 wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using groups actions on trees. There are more than 300 exercises and approximately 60 illustrations to help develop the student's intuition.
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups," provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo logical algebra and algebraic K-theory. It arose primarily in the 1920's and 1930's independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N"
This book is a monograph on unitals embedded in ?nite projective planes. Unitals are an interesting structure found in square order projective planes, and numerous research articles constructing and discussing these structures have appeared in print. More importantly, there still are many open pr- lems, and this remains a fruitful area for Ph.D. dissertations. Unitals play an important role in ?nite geometry as well as in related areas of mathematics. For example, unitals play a parallel role to Baer s- planes when considering extreme values for the size of a blocking set in a square order projective plane (see Section 2.3). Moreover, unitals meet the upper bound for the number of absolute points of any polarity in a square order projective plane (see Section 1.5). From an applications point of view, the linear codes arising from unitals have excellent technical properties (see 2 Section 6.4). The automorphism group of the classical unitalH =H(2, q ) is 2-transitive on the points ofH, and so unitals are of interest in group theory. In the ?eld of algebraic geometry over ?nite ?elds, H is a maximal curve that contains the largest number of F -rational points with respect to its genus, 2 q as established by the Hasse-Weil boun
This book gives the complete classification of Moufang polygons, starting from first principles. In particular, it may serve as an introduction to the various important algebraic concepts which arise in this classification including alternative division rings, quadratic Jordan division algebras of degree three, pseudo-quadratic forms, BN-pairs and norm splittings of quadratic forms. This book also contains a new proof of the classification of irreducible spherical buildings of rank at least three based on the observation that all the irreducible rank two residues of such a building are Moufang polygons. In an appendix, the connection between spherical buildings and algebraic groups is recalled. |
![]() ![]() You may like...
Big Data and Analytics - Strategic and…
Vincenzo Morabito
Hardcover
Scientific Workflows - Programming…
Jun Qin, Thomas Fahringer
Hardcover
R2,889
Discovery Miles 28 890
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
Weather Modeling and Forecasting of PV…
Marius Paulescu, Eugenia Paulescu, …
Hardcover
R4,402
Discovery Miles 44 020
Handbook of Pediatric Brain Imaging…
Hao Huang, Timothy Roberts
Paperback
R3,751
Discovery Miles 37 510
Mixed-Effects Models in S and S-PLUS
Jose Pinheiro, Douglas Bates
Hardcover
R6,329
Discovery Miles 63 290
|