![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
The aim of this book is to extend the understanding of the fundamental role of generalizations of Lie and related non-commutative and non-associative structures in Mathematics and Physics. This is a thematic volume devoted to the interplay between several rapidly exp- ding research ?elds in contemporary Mathematics and Physics, such as generali- tions of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, n- commutative geometry and applications in Physics and beyond. The speci?c ?elds covered by this volume include: * Applications of Lie, non-associative and non-commutative associative structures to generalizations of classical and quantum mechanics and non-linear integrable systems, operadic and group theoretical methods; * Generalizations and quasi-deformations of Lie algebras such as color and super Lie algebras, quasi-Lie algebras, Hom-Lie algebras, in?nite-dimensional Lie algebras of vector ?elds associated to Riemann surfaces, quasi-Lie algebras of Witt type and their central extensions and deformations important for in- grable systems, for conformal ? eld theory and for string theory; * Non-commutative deformation theory, moduli spaces and interplay with n- commutativegeometry,algebraicgeometryandcommutativealgebra,q-deformed differential calculi and extensions of homological methods and structures; * Crossed product algebras and actions of groups and semi-groups, graded rings and algebras, quantum algebras, twisted generalizations of coalgebras and Hopf algebra structures such as Hom-coalgebras, Hom-Hopf algebras, and super Hopf algebras and their applications to bosonisation, parastatistics, parabosonic and parafermionic algebras, orthoalgebas and root systems in quantum mechanics;
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.
This book is a concept-oriented treatment of the structure theory of association schemes. The generalization of Sylow 's group theoretic theorems to scheme theory arises as a consequence of arithmetical considerations about quotient schemes. The theory of Coxeter schemes (equivalent to the theory of buildings) emerges naturally and yields a purely algebraic proof of Tits main theorem on buildings of spherical type.
Groups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Throughout the book, emphasis is placed on concrete examples, often geometrical in nature, so that finite rotation groups and the 17 wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using groups actions on trees. There are more than 300 exercises and approximately 60 illustrations to help develop the student's intuition.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
This collection of survey lectures in mathematics traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Technical University (ETH) at Zurich, as student, lecturer, professor, and professor emeritus.
This introduction to polynomial rings, Gr bner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.
The worthy purpose of this text is to provide a complete, self-contained development of the trace formula and theta inversion formula for SL(2, Z i])\SL(2, C). Unlike other treatments of the theory, the approach taken here is to begin with the heat kernel on SL(2, C) associated to the invariant Laplacian, which is derived using spherical inversion. The heat kernel on the quotient space SL(2, Z i])\SL(2, C) is arrived at through periodization, and further expanded in an eigenfunction expansion. A theta inversion formula is obtained by studying the trace of the heat kernel. Following the author's previous work, the inversion formula then leads to zeta functions through the Gauss transform.
The new edition of this well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit. A subject index has been added and a number of misprints have been corrected.
This book treats Jacques Tit's beautiful theory of buildings, making that theory accessible to readers with minimal background. It covers all three approaches to buildings, so that the reader can choose to concentrate on one particular approach. Beginners can use parts of the new book as a friendly introduction to buildings, but the book also contains valuable material for the active researcher. This book is suitable as a textbook, with many exercises, and it may also be used for self-study.
Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
This book is a study of group theoretical properties of two dis parate kinds, firstly finiteness conditions or generalizations of fini teness and secondly generalizations of solubility or nilpotence. It will be particularly interesting to discuss groups which possess properties of both types. The origins of the subject may be traced back to the nineteen twenties and thirties and are associated with the names of R. Baer, S. N. Cernikov, K. A. Hirsch, A. G. Kuros, 0.]. Schmidt and H. Wie landt. Since this early period, the body of theory has expanded at an increasingly rapid rate through the efforts of many group theorists, particularly in Germany, Great Britain and the Soviet Union. Some of the highest points attained can, perhaps, be found in the work of P. Hall and A. I. Mal'cev on infinite soluble groups. Kuras's well-known book "The theory of groups" has exercised a strong influence on the development of the theory of infinite groups: this is particularly true of the second edition in its English translation of 1955. To cope with the enormous increase in knowledge since that date, a third volume, containing a survey of the contents of a very large number of papers but without proofs, was added to the book in 1967."
The mathematical theory of control became a ?eld of study half a century ago in attempts to clarify and organize some challenging practical problems and the methods used to solve them. It is known for the breadth of the mathematics it uses and its cross-disciplinary vigor. Its literature, which can befoundinSection93ofMathematicalReviews, wasatonetimedominatedby the theory of linear control systems, which mathematically are described by linear di?erential equations forced by additive control inputs. That theory led to well-regarded numerical and symbolic computational packages for control analysis and design. Nonlinear control problems are also important; in these either the - derlying dynamical system is nonlinear or the controls are applied in a n- additiveway.Thelastfourdecadeshaveseenthedevelopmentoftheoretical work on nonlinear control problems based on di?erential manifold theory, nonlinear analysis, and several other mathematical disciplines. Many of the problems that had been solved in linear control theory, plus others that are new and distinctly nonlinear, have been addressed; some resulting general de?nitions and theorems are adapted in this book to the bilinear case
Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields."
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
The first book on commutative semigroups was Redei's The theory of .finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the stan- dard examples ofsemigroups, which consist ofvarious kinds oftransformations or arise from finite automata, and are usually quite noncommutative. Commutative of factoriza- semigroups provide a natural setting and a useful tool for the study tion in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semi groups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part oftoday's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002].
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world s leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions:
This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
This book deals with the theory of Kac algebras and their dual ity, elaborated independently by M. Enock and J . -M. Schwartz, and by G. !. Kac and L. !. Vajnermann in the seventies. The sub ject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the character ization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. !. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality.
The purpose of the book is to take stock of the situation
concerning Algebra via Category Theory in the last fifteen years,
where the new and synthetic notions of Mal'cev, protomodular,
homological and semi-abelian categories emerged. These notions
force attention on the fibration of points and allow a unified
treatment of the main algebraic: homological lemmas, Noether
isomorphisms, commutator theory. |
![]() ![]() You may like...
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,298
Discovery Miles 32 980
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,717
Discovery Miles 37 170
Computation and Combinatorics in…
Elena Celledoni, Giulia Di Nunno, …
Hardcover
R5,202
Discovery Miles 52 020
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,960
Discovery Miles 29 600
|