Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996
This ground-breaking new volume reviews and extends theory and research on the psychology of justice in social contexts, exploring the dynamics of fairness judgments and their consequences. Perceptions of fairness, and the factors that cause and are caused by fairness perceptions, have long been an important part of social psychology. Featuring work from leading scholars on psychological processes involved in reactions to fairness, as well as the applications of justice research to government institutions, policing, medical care and the development of radical and extremist behavior, the book expertly brings together two traditionally distinct branches of social psychology: social cognition and interpersonal relations. Examining how people judge whether the treatment they experience from others is fair and how this effects their attitudes and behaviors, this essential collection draws on theory and research from multiple disciplines as it explores the dynamics of fairness judgments and their consequences. Integrating theory on interpersonal relations and social cognition, and featuring innovative biological research, this is the ideal companion for senior undergraduates and graduates, as well as researchers and scholars interested in the social psychology of justice.
This volume elucidates some of the very concrete ways in which Americans misperceive the social world and how we are all subject to biases and illusions. As such, it challenges the assumption in much social science theorizing that people are rational actors by exploring how the machinations of cognition, the effect of our past experiences, the news, and social media feeds all factor into our opinion-making process. The chapters highlight common, and often incorrect, perceptions of population diversity, sexual behavior, the economy, health, and relationships. It shows how correcting these misperceptions of the social world can lead to real behavioral and attitudinal change.
From the reviews: "This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields." (American Scientist) "By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..." (Math. Reviews)
The normal subgroup structure of maximal pro-"p"-subgroups of rational points of algebraic groups over the "p"-adics and their characteristic "p" analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and "p" are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions.
The invariant theory of non-reductive groups has its roots in the 19th century but has seen some very interesting developments in the past twenty years. This book is an exposition of several related topics including observable subgroups, induced modules, maximal unipotent subgroups of reductive groups and the method of U-invariants, and the complexity of an action. Much of this material has not appeared previously in book form. The exposition assumes a basic knowledge of algebraic groups and then develops each topic systematically with applications to invariant theory. Exercises are included as well as many examples, some of which are related to geometry and physics.
This fascinating new book examines diversity in moral judgements, drawing on recent work in social, personality, and evolutionary psychology, reviewing the factors that influence the moral judgments people make. Why do reasonable people so often disagree when drawing distinctions between what is morally right and wrong? Even when individuals agree in their moral pronouncements, they may employ different standards, different comparative processes, or entirely disparate criteria in their judgments. Examining the sources of this variety, the author expertly explores morality using ethics position theory, alongside other theoretical perspectives in moral psychology, and shows how it can relate to contemporary social issues from abortion to premarital sex to human rights. Also featuring a chapter on applied contexts, using the theory of ethics positions to gain insights into the moral choices and actions of individuals, groups, and organizations in educational, research, political, medical, and business settings, the book offers answers that apply across individuals, communities, and cultures. Investigating the relationship between people's personal moral philosophies and their ethical thoughts, emotions, and actions, this is fascinating reading for students and academics from psychology and philosophy and anyone interested in morality and ethics.
This book follows the same successful approach as Dr Burn's previous book on number theory. It consists of a carefully constructed sequence of questions which will enable the reader, through his or her own participation, to generate all the group theory covered by a conventional first university course. An introduction to vector spaces, leading to the study of linear groups, and an introduction to complex numbers, leading to the study of Moebius transformations and stereographic projection, are also included. Quaternions and their relationship to three-dimensional isometries are covered, and the climax of the book is a study of crystallographic groups, with a complete analysis of these groups in two dimensions.
Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.
From the reviews:
This book is addressed to mathematicians and advanced students interested in buildings, groups and their interplay. Its first part introduces - presupposing good knowledge of ordinary buildings - the theory of twin buildings, discusses its group-theoretic background (twin BN-pairs), investigates geometric aspects of twin buildings and applies them to determine finiteness properties of certain S-arithmetic groups. This application depends on topological properties of some subcomplexes of spherical buildings. The background of this problem, some examples and the complete solution for all "sufficiently large" classical buildings are covered in detail in the second part of the book.
Starting from basic knowledge of nilpotent (Lie) groups, an algebraic theory of almost-Bieberbach groups, the fundamental groups of infra-nilmanifolds, is developed. These are a natural generalization of the well known Bieberbach groups and many results about ordinary Bieberbach groups turn out to generalize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
This book contains selected papers from the international conference Groups--St Andrews 1985. It provides a comprehensive picture of current progress and research in group theory. Five leading group theorists, Bachmuth, Baumslag, Neumann, Roseblade and Tits have presented survey articles based on short lecture courses given at the conference and the rest of the book comprises both survey and research articles contributed by other conference speakers. The many articles with their wealth of references demonstrate the richness and vitality of modern group theory and its many connections with other areas of mathematics. The book will prove invaluable to both experienced researchers and new postgraduates whose interests involve group theory.
The primary object of the lecture notes is to develop a treatment of association schemes analogous to that which has been so successful in the theory of finite groups. The main chapters are decomposition theory, representation theory, and the theory of generators. Tits buildings come into play when the theory of generators is developed. Here, the buildings play the role which, in group theory, is played by the Coxeter groups. - The text is intended for students as well as for researchers in algebra, in particular in algebraic combinatorics.
The book is a mostly translated reprint of a report on cohomology of groups from the 1950s and 1960s, originally written as background for the Artin-Tate notes on class field theory, following the cohomological approach. This report was first published (in French) by Benjamin. For this new English edition, the author added Tate's local duality, written up from letters which John Tate sent to Lang in 1958 - 1959. Except for this last item, which requires more substantial background in algebraic geometry and especially abelian varieties, the rest of the book is basically elementary, depending only on standard homological algebra at the level of first year graduate students.
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.
This book has been written to introduce readers to group theory and its ap plications in atomic physics, molecular physics, and solid-state physics. The first Japanese edition was published in 1976. The present English edi tion has been translated by the authors from the revised and enlarged edition of 1980. In translation, slight modifications have been made in. Chaps. 8 and 14 to update and condense the contents, together with some minor additions and improvements throughout the volume. The authors cordially thank Professor J. L. Birman and Professor M. Car dona, who encouraged them to prepare the English translation. Tokyo, January 1990 T. Inui . Y. Tanabe Y. Onodera Preface to the Japanese Edition As the title shows, this book has been prepared as a textbook to introduce readers to the applications of group theory in several fields of physics. Group theory is, in a nutshell, the mathematics of symmetry. It has three main areas of application in modern physics. The first originates from early studies of crystal morphology and constitutes a framework for classical crystal physics. The analysis of the symmetry of tensors representing macroscopic physical properties (such as elastic constants) belongs to this category. The sec ond area was enunciated by E. Wigner (1926) as a powerful means of handling quantum-mechanical problems and was first applied in this sense to the analysis of atomic spectra. Soon, H."
The notes in this volume were written as a part of a Nachdiplom course that I gave at the ETH in the summer semester of 1995. The aim of my lectures was the development of some of the basics of the interaction of homological algebra, or more specifically the cohomology of groups, and modular representation theory. Every time that I had given such a course in the past fifteen years, the choice of the material and the order of presentation of the results have followed more or less the same basic pattern. Such a course began with the fundamentals of group cohomology, and then investigated the structure of cohomology rings, and their maximal ideal spectra. Then the variety of a module was defined and related to actual module structure through the rank variety. Applications followed. The standard approach was used in my University of Essen Lecture Notes [e1] in 1984. Evens [E] and Benson [B2] have written it up in much clearer detail and included it as part of their books on the subject.
Symmetries in Physics presents the fundamental theories of symmetry, together with many examples of applications taken from several different branches of physics. Emphasis is placed on the theory of group representations and on the powerful method of projection operators. The excercises are intended to stimulate readers to apply the techniques demonstrated in the text.
The theme of the monograph is an interplay between dynamical systems and group theory. The authors formalize and study "cyclic renormalization," a phenomenon which appears naturally for some interval dynamical systems. A possibly infinite hierarchy of such renormalizations is naturally represented by a rooted tree, together with a "spherically transitive" automorphism; the infinite case corresponds to maps with an invariant Cantor set, a class of particular interest for its relevance to the description of the transition to chaos and of the Mandelbrot set. The normal subgroup structure of the automorphism group of such "spherically homogeneous" rooted trees is investigated in some detail. This work will be of interest to researchers in both dynamical systems and group theory.
The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.
The aim of this CIME Session was to review the state of the art in the recent development of the theory of integrable systems and their relations with quantum groups. The purpose was to gather geometers and mathematical physicists to allow a broader and more complete view of these attractive and rapidly developing fields. The papers contained in this volume have at the same time the character of survey articles and of research papers, since they contain both a survey of current problems and a number of original contributions to the subject.
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
This book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The classification is based on methods from Lie group theory, complex analysis and algebraic geometry. Basic knowledge in these areas is presupposed.
Generalized Heisenberg groups, or H-type groups, introduced by A.
Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie
groups with a vast spectrum of properties and applications. These
harmonic spaces are homogeneous Hadamard manifolds containing the
H-type groups as horospheres. |
You may like...
Elementary Theory of Groups and Group…
Paul Baginski, Benjamin Fine, …
Hardcover
R3,917
Discovery Miles 39 170
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,264
Discovery Miles 32 640
The Psychology of Insecurity - Seeking…
Joseph P. Forgas, William D. Crano, …
Paperback
R1,336
Discovery Miles 13 360
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Classical Hopf Algebras and Their…
Pierre Cartier, Frederic Patras
Hardcover
R3,536
Discovery Miles 35 360
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R5,888
Discovery Miles 58 880
|