![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world s leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions:
This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
toComplexRe ectionGroups and Their Braid Groups 123 Michel Broue Universite Paris Diderot Paris 7 UFR de Mathematiques 175 Rue du Chevaleret 75013 Paris France broue@math. jussieu. fr ISBN: 978-3-642-11174-7 e-ISBN: 978-3-642-11175-4 DOI: 10. 1007/978-3-642-11175-4 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2009943837 Mathematics Subject Classi cation (2000): 20, 13, 16, 55 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, speci cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro lm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of aspeci c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover illustration: c Anouk Grinberg Cover design: SPi Publisher Services Printed on acid-free paper springer. com Preface Weyl groups are ?nite groups acting as re?ection groups on rational vector spaces. It iswellknownthat theserationalre?ectiongroupsappearas"ske- tons" of many important mathematical objects: algebraic groups, Hecke algebras, Artin-Tits braid groups, etc."
R.C. Bose: Graphs and designs.- R.H. Bruck: Construction problems in finite projective spaces.- R.H.F. Denniston: Packings of PG(3, q).- J. Doyen: Recent results on Steiner triple systems.- H. L neburg: Gruppen und endliche projektive Ebenen.- J.A. Thas: 4-gonal configurations.- H.P. Young: Affine triple systems.
A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for investigating this relationship. In addition to group theorists, the results are also of interest to topologists and number theorists. The approach is mainly combinatorial and homological. A novel feature is an exposition of simplicial methods for the study of problems in group theory.
This is the softcover reprint of the English translation of Bourbaki's text Groupes et Algebres de Lie, Chapters 7 to 9. It completes the previously published translations of Chapters 1 to 3 (3-540-64242-0) and 4 to 6 (978-3-540-69171-6) by covering the structure and representation theory of semi-simple Lie algebras and compact Lie groups. Chapter 7 deals with Cartan subalgebras of Lie algebras, regular elements and conjugacy theorems. Chapter 8 begins with the structure of split semi-simple Lie algebras and their root systems. It goes on to describe the finite-dimensional modules for such algebras, including the character formula of Hermann Weyl. It concludes with the theory of Chevalley orders. Chapter 9 is devoted to the theory of compact Lie groups, beginning with a discussion of their maximal tori, root systems and Weyl groups. It goes on to describe the representation theory of compact Lie groups, including the application of integration to establish Weyl's formula in this context. The chapter concludes with a discussion of the actions of compact Lie groups on manifolds. The nine chapters together form the most comprehensive text available on the theory of Lie groups and Lie algebras.
This thoroughly revised and updated version of the popular textbook on abstract algebra introduces students to easily understood problems and concepts. John Humphreys and Mike Prest include many examples and exercises throughout the book to make it more appealing to students and instructors. The second edition features new sections on mathematical reasoning and polynomials. In addition, three chapters have been completely rewritten and all others have been updated. First Edition Pb (1990): 0-521-35938-4
In 1999 a number of eminent mathematicians were invited to Bielefeld to present lectures at a conference on topological, combinatorial and arithmetic aspects of (infinite) groups. The present volume consists of survey and research articles invited from participants in this conference. Topics covered include topological finiteness properties of groups, Kac-Moody groups, the theory of Euler characteristics, the connection between groups, formal languages and automata, the Magnus-Nielsen method for one-relator groups, atomic and just infinite groups, topology in permutation groups, probabilistic group theory, the theory of subgroup growth, hyperbolic lattices in dimension three, generalised triangle groups and reduction theory. All contributions are written in a relaxed and attractive style, accessible not only to specialists, but also to good graduate and post-graduate students, who will find inspiration for a number of basic research projects at various levels of technical difficulty.
At the crossroads of representation theory, algebraic geometry and finite group theory, this 2004 book blends together many of the main concerns of modern algebra, with full proofs of some of the most remarkable achievements in the area. Cabanes and Enguehard follow three main themes: first, applications of etale cohomology, leading to the proof of the recent Bonnafe-Rouquier theorems. The second is a straightforward and simplified account of the Dipper-James theorems relating irreducible characters and modular representations. The final theme is local representation theory. One of the main results here is the authors' version of Fong-Srinivasan theorems. Throughout the text is illustrated by many examples and background is provided by several introductory chapters on basic results and appendices on algebraic geometry and derived categories. The result is an essential introduction for graduate students and reference for all algebraists.
Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. It explores the analytic behavior of these functions together with an investigation of functional equations. The book examines many important examples of zeta functions, providing an important database of explicit examples and methods for calculation.
This two-volume set contains selected papers from the conference Groups St. Andrews 2001 in Oxford. Contributed by leading researchers, the articles cover a wide spectrum of modern group theory. Contributions based on lecture courses given by five main speakers are included with refereed survey and research articles.
This two-volume set contains selected papers from the conference Groups St. Andrews 2001 in Oxford. Contributed by leading researchers, the articles cover a wide spectrum of modern group theory. Contributions based on lecture courses given by five main speakers are included with refereed survey and research articles. The Groups St. Andrews proceedings volumes represent a view of the state of the art in group theory and often play an important role in future developments in the subject.
The first edition of this book was the indispensable reference for researchers in the theory of pro-p groups. In this second edition the presentation has been improved and important new material has been added. The first part of the book is group-theoretic. It develops the theory of pro-p groups of finite rank, starting from first principles and using elementary methods. Part II introduces p-adic analytic groups: by taking advantage of the theory developed in Part I, it is possible to define these, and derive all the main results of p-adic Lie theory, without having to develop any sophisticated analytic machinery. Part III, consisting of new material, takes the theory further. Among those topics discussed are the theory of pro-p groups of finite coclass, the dimension subgroup series, and its associated graded Lie algebra. The final chapter sketches a theory of analytic groups over pro-p rings other than the p-adic integers.
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.
People interact and perform in group settings in all areas of life. Organizations and businesses are increasingly structuring work around groups and teams. Every day, we work in groups such as families, friendship groups, societies and sports teams, to make decisions and plans, solve problems, perform physical tasks, generate creative ideas, and more. Group Performance outlines the current state of social psychological theories and findings concerning the performance of groups. It explores the basic theories surrounding group interaction and development and investigates how groups affect their members. Bernard A. Nijstad discusses these issues in relation to the many different tasks that groups may perform, including physical tasks, idea generation and brainstorming, decision-making, problem-solving, and making judgments and estimates. Finally, the book closes with an in-depth discussion of teamwork and the context in which groups interact and perform. Offering an integrated approach, with particular emphasis on the interplay between group members, the group task, interaction processes and context, this book provides a state-of-the-art overview of social psychological theory and research. It will be highly valuable to undergraduates, graduates and researchers in social psychology, organizational behavior and business.
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.
Trust is a crucial facet of social functioning that feeds into our relationships with individuals, groups, and organizations. The Psychology of Interpersonal Trust: Theory and Research examines existing theories, frameworks, and models of trust as well as the methods and designs for examining it. To fully examine how interpersonal trust impacts our lives, Rotenberg reviews the many essential topics trust relates to, including close relationships, trust games, behavioural trust, and trust development. Designed to encourage researchers to recognize the links between different approaches to trust, this book begins with an overview of the different approaches to interpersonal trust and a description of the methods used to investigate it. Following on from this, each chapter introduces a new subtopic or context, including lying, adjustment, socialization, social media, politics, and health. Each subtopic begins with a short monologue (to provide a personal perspective) and covers basic theory and research. Rotenberg's applied focus demonstrates the relevance of interpersonal trust and highlights the issues and problems people face in contemporary society. This is essential reading for students, researchers, and academics in social psychology, especially those with a specific interest in the concept of trust.
This monograph offers a broad investigative tool in ergodic theory and measurable dynamics. The motivation for this work is that one may measure how similar two dynamical systems are by asking how much the time structure of orbits of one system must be distorted for it to become the other. Different restrictions on the allowed distortion will lead to different restricted orbit equivalence theories. These include Ornstein's Isomorphism theory, Kakutani Equivalence theory and a list of others. By putting such restrictions in an axiomatic framework, a general approach is developed that encompasses all of these examples simultaneously and gives insight into how to seek further applications.
This is an elementary introduction to the representation theory of
real and complex matrix groups. The text is written for students in
mathematics and physics who have a good knowledge of
differential/integral calculus and linear algebra and are familiar
with basic facts from algebra, number theory and complex analysis.
The goal is to present the fundamental concepts of representation
theory, to describe the connection between them, and to explain
some of their background. The focus is on groups which are of
particular interest for applications in physics and number theory
(e.g. Gell-Mann's eightfold way and theta functions, automorphic
forms). The reader finds a large variety of examples which are
presented in detail and from different points of view.
This second volume in a two-volume set provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. It contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-Abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. By way of their systematic treatment of group amalgams, the authors establish a deep and important mathematical result.
To take stock and to discuss the most fruitful directions for future research, many of the world's leading figures met at the Durham Symposium on Quantum Groups in the summer of 1999, and this volume provides an excellent overview of the material presented there. It includes important surveys of both cyclotomic Hecke algebras and the dynamical Yang-Baxter equation. Plus contributions which treat the construction and classification of quantum groups or the associated solutions of the quantum Yang-Baxter equation. The representation theory of quantum groups is discussed, as is the function algebra approach to quantum groups, and there is a new look at the origins of quantum groups in the theory of integrable systems.
Operational Quantum Theory II is a distinguished work on quantum theory at an advanced algebraic level. The classically oriented hierarchy with objects such as particles as the primary focus, and interactions of the objects as the secondary focus is reversed with the operational interactions as basic quantum structures. Quantum theory, specifically relativistic quantum field theory is developed the theory of Lie group and Lie algebra operations acting on both finite and infinite dimensional vector spaces. This book deals with the operational concepts of relativistic space time, the Lorentz and Poincare group operations and their unitary representations, particularly the elementary articles. Also discussed are eigenvalues and invariants for non-compact operations in general as well as the harmonic analysis of noncompact nonabelian Lie groups and their homogeneous spaces. In addition to the operational formulation of the standard model of particle interactions, an attempt is made to understand the particle spectrum with the masses and coupling constants as the invariants and normalizations of a tangent representation structure of a an homogeneous space time model. Operational Quantum Theory II aims to understand more deeply on an operational basis what one is working with in relativistic quantum field theory, but also suggests new solutions to previously unsolved problems.
Drawing on psychological and sociological perspectives as well as quantitative and qualitative data, Identity and Interethnic Marriage in the United States considers the ways the self and social identity are linked to the dynamics of interethnic marriage. Bringing together the classic theoretical contributions of George Herbert Mead, Erving Goffman, and Erik Erikson with contemporary research on ethnic identity inspired by Jean Phinney, this book argues that the self and social identity-especially ethnic identity-are reflected in individuals' complex journey from singlehood to interethnic marriage within the United States.
In this classic edition of her groundbreaking text Knowledge in Context, Sandra Jovchelovitch revisits her influential work on the societal and cultural processes that shape the development of representational processes in humans. Through a novel analysis of processes of representation, and drawing on dialogues between psychology, sociology and anthropology, Jovchelovitch argues that representation, a social psychological construct relating Self, Other and Object-world, is at the basis of all knowledge. Exploring the dominant assumptions of western conceptions of knowledge and the quest for a unitary reason free from the 'impurities' of person, community and culture, Jovchelovitch recasts questions related to historical comparisons between the knowledge of adults and children, 'civilised' and 'primitive' peoples, scientists and lay communities and examines the ambivalence of classical theorists such as Piaget, Vygotsky, Freud, Durkheim and Levy-Bruhl in addressing these issues. Featuring a new introductory chapter, the author evaluates the last decade of research since Knowledge in Context first appeared and reassesses the social psychology of the contemporary public sphere, exploring how challenges to the dialogicality of representations reconfigure both community and selfhood in this early 21st century. This book will make essential reading for all those wanting to follow debates on knowledge and representation at the cutting edge of social, cultural and developmental psychology, sociology, anthropology, development and cultural studies.
This second edition develops the foundations of finite group theory. For students already exposed to a first course in algebra, it serves as a text for a course on finite groups. For the reader with some mathematical sophistication but limited knowledge of finite group theory, the book supplies the basic background necessary to begin to read journal articles in the field. It also provides the specialist in finite group theory with a reference on the foundations of the subject. Unifying themes include the Classification Theorem and the classical linear groups. Lie theory appears in chapters on Coxeter groups, root systems, buildings, and Tits systems. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises. |
You may like...
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Elementary Theory of Groups and Group…
Paul Baginski, Benjamin Fine, …
Hardcover
R3,963
Discovery Miles 39 630
|