![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Author's Preface to the Russian Edition This book is written for advanced students, for predoctoral graduate stu dents, and for professional scientists-mathematicians, physicists, and chemists-who desire to study the foundations of the theory of finite dimensional representations of groups. We suppose that the reader is familiar with linear algebra, with elementary mathematical analysis, and with the theory of analytic functions. All else that is needed for reading this book is set down in the book where it is needed or is provided for by references to standard texts. The first two chapters are devoted to the algebraic aspects of the theory of representations and to representations of finite groups. Later chapters take up the principal facts about representations of topological groups, as well as the theory of Lie groups and Lie algebras and their representations. We have arranged our material to help the reader to master first the easier parts of the theory and later the more difficult. In the author's opinion, however, it is algebra that lies at the heart of the whole theory. To keep the size of the book within reasonable bounds, we have limited ourselves to finite-dimensional representations. The author intends to devote another volume to a more general theory, which includes infinite dimensional representations."
This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: * G. Anderson: "Gauss sums, circular units and the simplex" * G. Anderson and Y. Ihara: "Galois actions on 11"1 ( *** ) and higher circular units" * D. Blasius: "Maass forms and Galois representations" * P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" * W. Feit: "Some Galois groups over number fields" * Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk * U. Jannsen: "Galois cohomology of i-adic representations" * B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" * B. Mazur: "Deforming GL(2) Galois representations" * K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" * J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" * J.
One of the pervasive phenomena in the history of science is the development of independent disciplines from the solution or attempted solutions of problems in other areas of science. In the Twentieth Century, the creation of specialties witqin the sciences has accelerated to the point where a large number of scientists in any major branch of science cannot understand the work of a colleague in another subdiscipline of his own science. Despite this fragmentation, the development of techniques or solutions of problems in one area very often contribute fundamentally to solutions of problems in a seemingly unrelated field. Therefore, an examination of this phenomenon of the formation of independent disciplines within the sciences would contrib ute to the understanding of their evolution in modern times. We believe that in this context the history of combinatorial group theory in the late Nineteenth Century and the Twentieth Century can be used effectively as a case study. It is a reasonably well-defined independent specialty, and yet it is closely related to other mathematical disciplines. The fact that combinatorial group theory has, so far, not been influenced by the practical needs of science and technology makes it possible for us to use combinatorial group theory to exhibit the role of the intellectual aspects of the development of mathematics in a clearcut manner. There are other features of combinatorial group theory which appear to make it a reasona ble choice as the object of a historical study."
Of all topological algebraic structures compact topological groups have perhaps the richest theory since 80 many different fields contribute to their study: Analysis enters through the representation theory and harmonic analysis; differential geo metry, the theory of real analytic functions and the theory of differential equations come into the play via Lie group theory; point set topology is used in describing the local geometric structure of compact groups via limit spaces; global topology and the theory of manifolds again playa role through Lie group theory; and, of course, algebra enters through the cohomology and homology theory. A particularly well understood subclass of compact groups is the class of com pact abelian groups. An added element of elegance is the duality theory, which states that the category of compact abelian groups is completely equivalent to the category of (discrete) abelian groups with all arrows reversed. This allows for a virtually complete algebraisation of any question concerning compact abelian groups. The subclass of compact abelian groups is not so special within the category of compact. groups as it may seem at first glance. As is very well known, the local geometric structure of a compact group may be extremely complicated, but all local complication happens to be "abelian." Indeed, via the duality theory, the complication in compact connected groups is faithfully reflected in the theory of torsion free discrete abelian groups whose notorious complexity has resisted all efforts of complete classification in ranks greater than two."
appear in Volume 1, a Roman numeral "I" has been prefixed as a reminder to the reader; thus, for example, "I, B.2.1 " refers to Appendix B.2.1 in Volume 1. An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibli ography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover devel opments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examin ation of the bibliography and by scrutiny of the usual review literature."
There are many approaches to noncommutative geometry and its use in physics, the ? operator algebra and C -algebra one, the deformation quantization one, the qu- tum group one, and the matrix algebra/fuzzy geometry one. This volume introduces and develops the subject by presenting in particular the ideas and methods recently pursued by Julius Wess and his group. These methods combine the deformation quantization approach based on the - tion of star product and the deformed (quantum) symmetries methods based on the theory of quantum groups. The merging of these two techniques has proven very fruitful in order to formulate ?eld theories on noncommutative spaces. The aim of the book is to give an introduction to these topics and to prepare the reader to enter the research ?eld himself/herself. This has developed from the constant interest of Prof. W. Beiglboeck, editor of LNP, in this project, and from the authors experience in conferences and schools on the subject, especially from their interaction with students and young researchers. In fact quite a few chapters in the book were written with a double purpose, on the one hand as contributions for school or conference proceedings and on the other handaschaptersforthepresentbook.Thesearenowharmonizedandcomplemented by a couple of contributions that have been written to provide a wider background, to widen the scope, and to underline the power of our methods.
Und dann erst kommt der "Ab -ge - sa. ng\' da. /3 der nidlt kurz und nicht zu la. ng, From "Die Meistersinger von Nurnberg," Richard Wagner This final volume is concerned with some of the developments of the subject in the 1960's. In attempting to determine the simple groups, the first step was to settle the conjecture of Burnside that groups of odd order are soluble. The proof that this conjecture was correct is much too long and complicated for presentation in this text, but a number of ideas in the early stages of it led to a local theory of finite groups, so me aspects of which are discussed in Chapter X. Much of this discussion is a con tinuation of the theory of the transfer (see Chapter IV), but we also introduce the generalized Fitting subgroup, which played a basic role in characterization theorems, that is, in descriptions of specific groups in terms of group-theoretical properties alone. One of the earliest and most important such characterizations was given for Zassenhaus groups; this is presented in Chapter XI. Characterizations in terms of the centralizer of an involution are of particular importance in view of the theorem of Brauer and Fowler. In Chapter XII, one such theorem is given, in which the Mathieu group 9J'l1l and PSL(3, 3) are characterized."
Ah Love Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme."
Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this monograph is intended to: fully enable readers (graduates or specialists, mathematicians, physicists or applied scientists, acquainted with Algebra or not) to understand and apply the statements and numerous corollaries of the main result, provide a wide spectrum of proofs from the modern literature, comparing different techniques and furnishing a unifying point of view and notation, provide a thorough historical background of the results, together with unknown facts about the effective early contributions by Schur, Poincare, Pascal, Campbell, Baker, Hausdorff and Dynkin, give an outlook on the applications, especially in Differential Geometry (Lie group theory) and Analysis (PDEs of subelliptic type) andquickly enable the reader, through a description of the state-of-art and open problems, to understand the modern literature concerning a theorem which, though having its roots in the beginning of the20th century, has not ceased to provide new problems and applications. The book assumes some undergraduate-level knowledge of algebra and analysis, but apart from that is self-contained. Part II of the monograph is devoted to the proofs of the algebraic background. The monograph may therefore provide a tool for beginners in Algebra."
Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . * 1111 Oulik'. n. . Chi" *. * ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
One service mathematics has rendered the 'Eot moi, ..., si j'avait JU comment en revenir. human race. h has put common sense back je n'y serais point aUe:' Jules Verne where it belongs, 011 the topmost shelf nen to the dusty canister labeUed 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H es viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This book presents the text of most of the lectures which were de- livered at the Meeting Quantum Theories and Geometry which was held at the Fondation Les Treilles from March 23 to March 27, 1987. The general aim of this meeting was to bring together mathemati- cians and physicists who have worked in this growing field of contact between the two disciplines, namely this region where geometry and physics interact creatively in both directions. It 1S the strong belief of the organizers that these written con- tributions will be a useful document for research people workin~ 1n geometry or physics. Three lectures were devoted to the deformation approach to quantum mechanics which involves a modification of both the associative and the Lie structure of the algebra of functions on classical phase space. A.Lichnerowicz shows how one can view classical and quantum statistical mechanics in terms of a deformation with a parameter inversely propor- tional to temperature. S.Gutt reviews the physical background of star products and indicates their applications in Lie groups representa- tion theory and in harmonic analysis. D.Arnal gives a rigorous theory Vll viii PREFACI of the star exponential in the case of the Heisenberg group and shows how this can be extended to arbitrary nilpotent groups.
'Et moi, .... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alit.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bcll o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nOD linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The German edition of this book appeared in 1932 under the title "Die gruppentheoretische Methode in der Quantenmechanik." Its aim was, to explain the fundamental notions of the Theory of Groups and their Representations, and the application of this theory to the Quantum Mechanics of Atoms and Molecules. The book was mainly written for the benefit of physicists who were supposed to be familiar with Quantum Mechanics. However, it turned out that it was also used by. mathematicians who wanted to learn Quantum Mechanics from it. Naturally, the physical parts were too difficult for mathematicians, whereas the mathematical parts were sometimes too difficult for physicists. The German language created an additional difficulty for many readers. In order to make the book more readable for physicists and mathe maticians alike, I have rewritten the whole volume. The changes are most notable in Chapters 1 and 6. In Chapter t, I have tried to give a mathematically rigorous exposition of the principles of Quantum Mechanics. This was possible because recent investigations in the theory of self-adjoint linear operators have made the mathematical foundation of Quantum Mechanics much clearer than it was in t 932. Chapter 6, on Molecule Spectra, was too much condensed in the German edition. I hope it is now easier to understand. In Chapter 2-5 too, numerous changes were made in order to make the book more readable and more useful."
This is the second volume of a series of books in various aspects of Mathematical Physics. Mathematical Physics has made great strides in recent years, and is rapidly becoming an important dis cipline in its own right. The fact that physical ideas can help create new mathematical theories, and rigorous mathematical theo rems can help to push the limits of physical theories and solve problems is generally acknowledged. We believe that continuous con tacts between mathematicians and physicists and the resulting dialogue and the cross fertilization of ideas is a good thing. This series of studies is published with this goal in mind. The present volume contains contributions which were original ly presented at the Second NATO Advanced Study Institute on Mathe matical Physics held in Istanbul in the Summer of 1972. The main theme was the application of group theoretical methods in general relativity and in particle physics. Modern group theory, in par ticular, the theory of unitary irreducibl infinite-dimensional representations of Lie groups is being increasingly important in the formulation and solution of dynamical problems in various bran ches of physics. There is moreover a general trend of approchement of the methods of general relativity and elementary particle physics. We hope it will be useful to present these investigations to a larger audience."
This book gives an introductory exposition of the theory of hyperfunctions and regular singularities. This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
Representation theory, and more generally Lie theory, has played a very important role in many of the recent developments of mathematics and in the interaction of mathematics with physics. In August-September 1989, a workshop (Third Workshop on Representation Theory of Lie Groups and its Applications) was held in the environs of C6rdoba, Argentina to present expositions of important recent developments in the field that would be accessible to graduate students and researchers in related fields. This volume contains articles that are edited versions of the lectures (and short courses) given at the workshop. Within representation theory, one of the main open problems is to determine the unitary dual of a real reductive group. Although this prob lem is as yet unsolved, the recent work of Barbasch, Vogan, Arthur as well as others has shed new light on the structure of the problem. The article of D. Vogan presents an exposition of some aspects of this prob lem, emphasizing an extension of the orbit method of Kostant, Kirillov. Several examples are given that explain why the orbit method should be extended and how this extension should be implemented."
R. Baer: Complementation in finite gropus.- M. Lazard: Groupes, anneaux de Lie et probl me de Burnside.- J. Tits: Sur les groupes alg briques afffines. Th or mes fondamentaux de structure. Classification des groupes semisimples et g om tries associ es.
A companion volume to the text "Complex Variables: An Introduction" by the same authors, this book further develops the theory, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include: Boundary values of holomorphic functions in the sense of distributions; interpolation problems and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.
In recent years, there has been increasing interest and activity in the area of group actions on affine and projective algebraic varieties. Tech niques from various branches of mathematics have been important for this study, especially those coming from the well-developed theory of smooth compact transformation groups. It was timely to have an interdisciplinary meeting on these topics. We organized the conference "Topological Methods in Alg braic Transformation Groups," which was held at Rutgers University, 4-8 April, 1988. Our aim was to facilitate an exchange of ideas and techniques among mathematicians studying compact smooth transformation groups, alge braic transformation groups and related issues in algebraic and analytic geometry. The meeting was well attended, and these Proceedings offer a larger audience the opportunity to benefit from the excellent survey and specialized talks presented. The main topics concerned various as pects of group actions, algebraic quotients, homogeneous spaces and their compactifications. The meeting was made possible by support from Rutgers University and the National Science Foundation. We express our deep appreciation for this support. We also thank Annette Neuen for her assistance with the technical preparation of these Proceedings."
This book contains 43 papers form among the 55 papers presented at the Sixth International Conference on Fibonacci Numbers and Their Applications which was held at Washington State University, Pullman, Washington, from July 18-22, 1994. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its five predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. October 30, 1995 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Alwyn F. Horadam University of New England Armidale, N.S.W., Australia Andreas N. Philippou 26 Atlantis Street Aglangia, Nicosia Cyprus xxi THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Long, Calvin T., Co-Chair Horadam, A.F. (Australia), Co-Chair Webb, William A., Co-Chair Philippou, A.N. (Cyprus), Co-Chair Burke, John Ando, S. (Japan) DeTemple, Duane W.
This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch [3]. During the last forty years the theory of nearrings and related algebraic struc tures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics. |
![]() ![]() You may like...
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,717
Discovery Miles 37 170
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,709
Discovery Miles 47 090
Symmetries, Differential Equations and…
Victor G. Kac, Peter J. Olver, …
Hardcover
R4,446
Discovery Miles 44 460
Elementary Theory of Groups and Group…
Paul Baginski, Benjamin Fine, …
Hardcover
R4,108
Discovery Miles 41 080
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R6,177
Discovery Miles 61 770
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,298
Discovery Miles 32 980
|