![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
'Et moi *...* si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This second edition presents up-to-date material on the theory of weak convergance of convolution products of probability measures in semigroups, the theory of random walks on semigroups, and their applications to products of random matrices. In addition, this unique work examines the essentials of abstract semigroup theory and its application to concrete semigroups of matrices. This substantially revised text includes exercises at various levels at the end of each section and includes the best available proofs on the most important theorems used in a book, making it suitable for a one semester course on semigroups. In addition, it could also be used as a main text or supplementary material for courses focusing on probability on algebraic structures or weak convergance. This book is ideally suited to graduate students in mathematics, and students in other fields, such as engineering and the sciences with an interest in probability. Students in statistics using advanced probability will also find this book useful."
Kuo-Tsai Chen (1923-1987) is best known to the mathematics community for his work on iterated integrals and power series connections in conjunction with his research on the cohomology of loop spaces. His work is intimately related to the theory of minimal models as developed by Dennis Sullivan, whose own work was in part inspired by the research of Chen. An outstanding and original mathematician, Chen's work falls naturally into three periods: his early work on group theory and links in the three sphere; his subsequent work on formal differential equations, which gradually developed into his most powerful and important work; and his work on iterated integrals and homotopy theory, which occupied him for the last twenty years of his life. The goal of Chen's iterated integrals program, which is a de Rham theory for path spaces, was to study the interaction of topology and analysis through path integration. The present volume is a comprehensive collection of Chen's mathematical publications preceded by an article, "The Life and Work of Kuo-Tsai Chen," placing his work and research interests into their proper context and demonstrating the power and scope of his influence.
A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
With a more specific focus than the all-encompassing textbook, each title in the "Foundations of Psychology" series enables students who are new to psychology to get to grips with a key area of psychological research, while also developing an understanding of basic concepts, debates, and research methodologies. In this book Diana Jackson-Dwyer presents an introductory survey of classic and recent research on relationships and the theories that underpin them. The book starts with a brief overview of the place of relationships within the history of psychology and of their evolutionary roots: our need to belong, to attach and to affiliate. After a look at methodology, it considers different types of relationships: kinship, friendship, loving and mating. Theories are advanced to explain the formation, maintenance and breakdown of relationships. The book draws on a wide array of contemporary research, and covers issues ranging from rising divorce rates to cultural variations in mating patterns, the issue of gay marriage, and the effect of the internet on relationships. Each chapter contains numerous pedagogical features which will help students to engage with the material:
Assuming no prior knowledge of the subject, "Interpersonal Relationships "provides" "an accessible" "and up-to-date overview of this vibrant area of psychology. The book will be ideal reading for students who are new to higher-level study - whether at school, college or university, and will also be useful for first-year undergraduate students taking introductory courses in psychology.
H.Weyl studied harmonic analysis on compact groups of finite di mension. He proved that an orthonormal system exists and that any continuous function on these groups can be approximated by some tinite linear combination of functions in this system. His research, however, seems to be too abstract to yield an explicit expression for the orthonormal system. Thus, we cannot talk about the form of the approximation, nor about its convergence. iO The simplest example of compact groups is {e }, on which there exists an orthonormal system inO { e }, n = 0, +/- 1, +/- 2 , ... , namely 1 J2" ." ." {I, for n = m; - e,n"e-1m"dO = 2n 0 0, for n =;6 m. The harmonic analysis on this compact group refers to the whole Fourier analysis. So far, extensive literature has been available on this topic. Its remarkable progress is evidenced by the great monograph of seven-hundred pages in two volumes written by A. Zygmund in 1959. iO An immediate extension for {e } is group U", which consists of all n X n square matrices U satisfying ufj' = I, where fj' denotes the conjugate transpose matrix of U. As for construction, there is a close relation between the group U and the group S03. Besides, 2 the application of U" has been found more and more important in physics.
A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2002. The subject of this book is the study of automorphic distributions, by which is meant distributions on R2 invariant under the linear action of SL(2, Z), and of the operators associated with such distributions under the Weyl rule of symbolic calculus. Researchers and postgraduates interested in pseudodifferential analyis, the theory of non-holomorphic modular forms, and symbolic calculi will benefit from the clear exposition and new results and insights.
The representation theory of the symmetric group, of Chevalley groups particularly in positive characteristic and of Lie algebraic systems, has undergone some remarkable developments in recent years. Many techniques are inspired by the great works of Issai Schur who passed away some 60 years ago. This volume is dedicated to his memory. This is a unified presentation consisting of an extended biography of Schur---written in collaboration with some of his former students---as well as survey articles on Schur's legacy (Schur theory, functions, etc). Additionally, there are articles covering the areas of orbits, crystals and representation theory, with special emphasis on canonical bases and their crystal limits, and on the geometric approach linking orbits to representations and Hecke algebra techniques. Extensions of representation theory to mathematical physics and geometry will also be presented. Contributors: Biography: W. Ledermann, B. Neumann, P.M. Neumann, H. Abelin- Schur; Review of work: H. Dym, V. Katznelson; Original papers: H. H. Andersen, A. Braverman, S. Donkin, V. Ivanov, D. Kazhdan, B. Kostant, A. Lascoux, N. Lauritzen, B. Leclerc, P. Littelmann, G. Luzstig, O.Mathieu, M. Nazarov, M. Reinek, J.-Y. Thibon, G. Olshanski, E. Opdam, A. Regev, C.S. Seshadri, M. Varagnolo, E. Vasserot, A. Vershik This volume will serve as a comprehensive reference as well as a good text for graduate seminars in representation theory, algebra, and mathematical physics.
The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method."
On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.
Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings. Audience: Graduate students of mathematics and algebraists interested in near-ring theory.
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups.
Many areas of mathematics were deeply influenced or even founded by Hermann Weyl, including geometric foundations of manifolds and physics, topological groups, Lie groups and representation theory, harmonic analysis and analytic number theory as well as foundations of mathematics. In this volume, leading experts present his lasting influence on current mathematics, often connecting Weyl's theorems with cutting edge research in dynamical systems, invariant theory, and partial differential equations. In a broad and accessible presentation, survey chapters describe the historical development of each area alongside up-to-the-minute results, focussing on the mathematical roots evident within Weyl's work.
The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.
The action of a compact Lie group, G, on a compact sympletic manifold gives rise to some remarkable combinatorial invariants. The simplest and most interesting of these is the moment polytopes, a convex polyhedron which sits inside the dual of the Lie algebra of G. One of the main goals of this monograph is to describe what kinds of geometric information are encoded in this polytope. This book is addressed to researchers and can be used as a semester text.
A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts."
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
"Numerical Semigroups" is the first monograph devoted exclusively to the development of the theory of numerical semigroups. This concise, self-contained text is accessible to first year graduate students, giving the full background needed for readers unfamiliar with the topic. Researchers will find the tools presented useful in producing examples and counterexamples in other fields such as algebraic geometry, number theory, and linear programming.
Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject."
Presenting groups in a formal, abstract algebraic manner is both useful and powerful, yet it avoids a fascinating geometric perspective on group theory - which is also useful and powerful, particularly in the study of infinite groups. This book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage the development of geometric intuition. Ideal for advanced undergraduates looking to deepen their understanding of groups, this book will also be of interest to graduate students and researchers as a gentle introduction to geometric group theory.
Presenting groups in a formal, abstract algebraic manner is both useful and powerful, yet it avoids a fascinating geometric perspective on group theory - which is also useful and powerful, particularly in the study of infinite groups. This book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage the development of geometric intuition. Ideal for advanced undergraduates looking to deepen their understanding of groups, this book will also be of interest to graduate students and researchers as a gentle introduction to geometric group theory.
Microlocal analysis began around 1970 when Mikio Sato, along with coauthors Masaki Kashiwara and Takahiro Kawai, wrote a decisive article on the structure of pseudodifferential equations, thus laying the foundation of D-modules and the singular spectrums of hyperfunctions. The key idea is the analysis of problems on the phase space, i.e., the cotangent bundle of the base space. Microlocal analysis is an active area of mathematical research that has been applied to many fields such as real and complex analysis, representation theory, topology, number theory, and mathematical physics. This volume contains the presentations given at a seminar jointly organized by the Japan Society for the Promotion of Science and Centre National des Recherches Scientifiques entitled New Trends in Microlocal Analysis. The book is divided into three parts: partial differential equations and mathematical analysis, mathematical physics, and algebraic analysis - D-modules and sheave theory. The large variety of new research that is covered will prove invaluable to students and researchers alike.
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel's work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.
This is a translation from the Japanese of the second volume (chapters four through six) of my book "Gunron" (Iwanami Shoten, 1978). After discussing the concept of commutators in the fourth chapter, we tum to a discussion of the methods and theorems pertaining to finite groups. The last chapter is intended as an introduction to the recent progress in the theory of simple groups. Forihe translation, I have kept the main body of the text unchanged, however I have added a few comments in the last chapter in order to inform the readers of the most recent progress. I would like to express my appreciation to Kazuko Suzuki for her devoted help in translating this book. Finally, it gives me great pleasure to acknowl edge my indebtedness to my wife, Naoko, for her constant support and understanding, and for converting the long and often illegible manuscript into a beautifully typed one. To her, I express my sincere thanks and appreciation. July, 1985 Michio Suzuki Contents (Part II) List of Notation IX Chapter 4 Commutators 1. Commutator Subgroups 2. Nilpotent Groups 13 37 3. Commutator Calculations 54 4. Finite p-Groups . . ." |
You may like...
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,682
Discovery Miles 26 820
Elementary Theory of Groups and Group…
Paul Baginski, Benjamin Fine, …
Hardcover
R3,963
Discovery Miles 39 630
Symbol Correspondences for Spin Systems
Pedro de M. Rios, Eldar Straume
Hardcover
Latin Squares - New Developments in the…
Jozsef Denes, A. Donald Keedwell
Hardcover
R1,961
Discovery Miles 19 610
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
|