Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This text provides an introduction to group theory with an emphasis
on clear examples. The authors present groups as naturally
occurring structures arising from symmetry in geometrical figures
and other mathematical objects. Written in a 'user-friendly' style,
where new ideas are always motivated before being fully introduced,
the text will help readers to gain confidence and skill in handling
group theory notation before progressing on to applying it in
complex situations. An ideal companion to any first or second year
course on the topic.
This book carefully presents a unified treatment of equivariant Poincare duality in a wide variety of contexts, illuminating an area of mathematics that is often glossed over elsewhere. The approach used here allows the parallel treatment of both equivariant and nonequivariant cases. It also makes it possible to replace the usual field of coefficients for cohomology, the field of real numbers, with any field of arbitrary characteristic, and hence change (equivariant) de Rham cohomology to the usual singular (equivariant) cohomology . The book will be of interest to graduate students and researchers wanting to learn about the equivariant extension of tools familiar from non-equivariant differential geometry.
This much-needed new book is the first to specifically detail free Lie algebras. Lie polynomials appeared at the turn of the century and were identified with the free Lie algebra by Magnus and Witt some thirty years later. Many recent, important developments have occurred in the field--especially from the point of view of representation theory--that have necessitated a thorough treatment of the subject. This timely book covers all aspects of the field, including characterization of Lie polynomials and Lie series, subalgebras and automorphisms, canonical projections, Hall bases, shuffles and subwords, circular words, Lie representations of the symmetric group, related symmetric functions, descent algebra, and quasisymmetric functions. With its emphasis on the algebraic and combinatorial point of view as well as representation theory, this book will be welcomed by students and researchers in mathematics and theoretical computer science.
This book focuses on the Symmetric Informationally Complete quantum measurements (SICs) in dimensions 2 and 3, along with one set of SICs in dimension 8. These objects stand out in ways that have earned them the moniker of "sporadic SICs". By some standards, they are more approachable than the other known SICs, while by others they are simply atypical. The author forays into quantum information theory using them as examples, and the author explores their connections with other exceptional objects like the Leech lattice and integral octonions. The sporadic SICs take readers from the classification of finite simple groups to Bell's theorem and the discovery that "hidden variables" cannot explain away quantum uncertainty. While no one department teaches every subject to which the sporadic SICs pertain, the topic is approachable without too much background knowledge. The book includes exercises suitable for an elective at the graduate or advanced undergraduate level.
K-theory is often considered a complicated `specialist's' theory. This book is an introduction to the basics and provides detailed explanation of the various concepts required for a deeper understanding of the subject. Some familiarity with basic C*algebra theory is assumed and then follows a careful construction and analysis of the operator K-theory groups and proof of the results of K-theory, including Bott periodicity.
This textbook explores advanced topics in differential geometry, chosen for their particular relevance to modern geometry processing. Analytic and algebraic perspectives augment core topics, with the authors taking care to motivate each new concept. Whether working toward theoretical or applied questions, readers will appreciate this accessible exploration of the mathematical concepts behind many modern applications. Beginning with an in-depth study of tensors and differential forms, the authors go on to explore a selection of topics that showcase these tools. An analytic theme unites the early chapters, which cover distributions, integration on manifolds and Lie groups, spherical harmonics, and operators on Riemannian manifolds. An exploration of bundles follows, from definitions to connections and curvature in vector bundles, culminating in a glimpse of Pontrjagin and Chern classes. The final chapter on Clifford algebras and Clifford groups draws the book to an algebraic conclusion, which can be seen as a generalized viewpoint of the quaternions. Differential Geometry and Lie Groups: A Second Course captures the mathematical theory needed for advanced study in differential geometry with a view to furthering geometry processing capabilities. Suited to classroom use or independent study, the text will appeal to students and professionals alike. A first course in differential geometry is assumed; the authors' companion volume Differential Geometry and Lie Groups: A Computational Perspective provides the ideal preparation.
Some of the most beautiful mathematical objects found in the last forty years are the sporadic simple groups. However, gaining familiarity with these groups presents problems for two reasons. First, they were discovered in many different ways, so to understand their constructions in depth one needs to study lots of different techniques. Second, since each of them is in a sense recording some exceptional symmetry in spaces of certain dimensions, they are by their nature highly complicated objects with a rich underlying combinatorial structure. Motivated by initial results which showed that the Mathieu groups can be generated by highly symmetrical sets of elements, which themselves have a natural geometric definition, the author develops from scratch the notion of symmetric generation. He exploits this technique by using it to define and construct many of the sporadic simple groups including all the Janko groups and the Higman-Sims group. This volume is suitable for researchers and postgraduates.
The Langlands Program was conceived initially as a bridge between Number Theory and Automorphic Representations, and has now expanded into such areas as Geometry and Quantum Field Theory, tying together seemingly unrelated disciplines into a web of tantalizing conjectures. A new chapter to this grand project is provided in this book. It develops the geometric Langlands Correspondence for Loop Groups, a new approach, from a unique perspective offered by affine Kac-Moody algebras. The theory offers fresh insights into the world of Langlands dualities, with many applications to Representation Theory of Infinite-dimensional Algebras, and Quantum Field Theory. This accessible text builds the theory from scratch, with all necessary concepts defined and the essential results proved along the way. Based on courses taught at Berkeley, the book provides many open problems which could form the basis for future research, and is accessible to advanced undergraduate students and beginning graduate students.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Aix-Marseille Universite, France Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book introduces recently developed ideas and techniques in semigroup theory to provide a handy reference guide previously unavailable in a single volume. The opening chapter provides sufficient background to enable the reader to follow any of the subsequent chapters, and would by itself be suitable for a first course in semigroup theory. The second chapter gives an account of free inverse semigroups leading to proofs of the McAlister P-theorems. Subsequent chapters have the underlying theme of diagrams and mappings, and the new material includes the theory of biordered sets of Nambooripad and Easdown, the semigroup diagrams of Remmers and Jackson with applications to the one-relator, and other word problems, a short proof of Isbell's Zigzag theorem with applications to epimorphisms and amalgams, together with combinatorial, probabalistic and graphical techniques used to prove results including Schein's Covering Theorem and Howie's Gravity Formula for finite full transformation semigroups. Nearly two hundred exercises serve the dual purpose of illustrating the richness of the subject while allowing the reader to come to grips with the material.
Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.
Elliptic operators arise naturally in several different mathematical settings, notably in the representation theory of Lie groups, the study of evolution equations, and the examination of Riemannian manifolds. This book develops the basic theory of elliptic operators on Lie groups and thereby extends the conventional theory of parabolic evolution equations to a natural non-commutative context. In order to achieve this goal, the author presents a synthesis of ideas from partial differential equations, harmonic analysis, functional analysis, and the theory of Lie groups. He begins by discussing the abstract theory of general operators with complex coefficients before concentrating on the central case of second-order operators with real coefficients. A full discussion of second-order subellilptic operators is also given. Prerequisites are a familiarity with basic semigroup theory, the elementary theory of Lie groups, and a firm grounding in functional analysis as might be gained from the first year of a graduate course.
The falling cat is an interesting theme to pursue, in which geometry, mechanics, and control are in action together. As is well known, cats can almost always land on their feet when tossed into the air in an upside-down attitude. If cats are not given a non-vanishing angular momentum at an initial instant, they cannot rotate during their motion, and the motion they can make in the air is vibration only. However, cats accomplish a half turn without rotation when landing on their feet. In order to solve this apparent mystery, one needs to thoroughly understand rotations and vibrations. The connection theory in differential geometry can provide rigorous definitions of rotation and vibration for many-body systems. Deformable bodies of cats are not easy to treat mechanically. A feasible way to approach the question of the falling cat is to start with many-body systems and then proceed to rigid bodies and, further, to jointed rigid bodies, which can approximate the body of a cat. In this book, the connection theory is applied first to a many-body system to show that vibrational motions of the many-body system can result in rotations without performing rotational motions and then to the cat model consisting of jointed rigid bodies. On the basis of this geometric setting, mechanics of many-body systems and of jointed rigid bodies must be set up. In order to take into account the fact that cats can deform their bodies, three torque inputs which may give a twist to the cat model are applied as control inputs under the condition of the vanishing angular momentum. Then, a control is designed according to the port-controlled Hamiltonian method for the model cat to perform a half turn and to halt the motion upon landing. The book also gives a brief review of control systems through simple examples to explain the role of control inputs.
L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy to read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2, R) and GL(3, R), and then for the general case of GL(n, R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, the last few years having seen the resolution of many longstanding conjectures. This volume contains important expositions and original work by some of the main contributors on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory, computer explorations and projective structures. Researchers in these and related areas will find much of interest here from the explosion in the area over recent years, including important and original research from leading names in the field.
This first part of a two-volume set offers a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The authors present this topic from the perspective of linear representations of finite-oriented graphs (quivers) and homological algebra. The self-contained treatment constitutes an elementary, up-to-date introduction to the subject using, on the one hand, quiver-theoretical techniques and, on the other, tilting theory and integral quadratic forms. Key features include many illustrative examples, plus a large number of end-of-chapter exercises. The detailed proofs make this work suitable both for courses and seminars, and for self-study. The volume will be of great interest to graduate students beginning research in the representation theory of algebras and to mathematicians from other fields.
This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups. Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are said to be 3/2-generated. Breuer, Guralnick and Kantor conjectured that a finite group is 3/2-generated if and only if every proper quotient is cyclic. We prove a strong version of this conjecture for almost simple classical groups, by bounding the spread of these groups. This involves analysing the automorphisms, fixed point ratios and subgroup structure of almost simple classical groups, so the first half of this monograph is dedicated to these general topics. In particular, we give a general exposition of Shintani descent. This monograph will interest researchers in group generation, but the opening chapters also serve as a general introduction to the almost simple classical groups.
The theory of polycyclic groups is a branch of infinite group theory which has a rather different flavour from the rest of that subject. This book is a comprehensive account of the present state of this theory. As well as providing a connected and self-contained account of the group-theoretical background, it explains in detail how deep methods of number theory and algebraic group theory have been used to achieve some very recent and rather spectacular advances in the subject. Up to now, most of this material has only been available in scattered research journals, and some of it is new. This book is the only unified account of these developments, and will be of interest to mathematicians doing research in algebra, and to postgraduate students studying that subject.
Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity.
This book explains the basic aspects of symmetry groups as applied to problems in physics and chemistry using an approach pioneered and developed by the author. The symmetry groups and their representations are worked out explicitly, eliminating the undue abstract nature of group theoretical methods. The author has systemized the wealth of knowledge on symmetry groups that has accumulated in the century since Fedrov discovered the 230 space groups. All space groups, unitary as well as antiunitary, are reconstructed based on the algebraic defining relations of the point groups. This work will be of great interest to graduate students and professionals in solid state physics, chemistry, mathematics, geology and those who are interested in magnetic crystal structures.
This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids.
The representation theory of symmetric groups is one of the most beautiful, popular, and important parts of algebra with many deep relations to other areas of mathematics, such as combinatorics, Lie theory, and algebraic geometry. Kleshchev describes a new approach to the subject, based on the recent work of Lascoux, Leclerc, Thibon, Ariki, Grojnowski, Brundan, and the author. Much of this work has only appeared in the research literature before. However, to make it accessible to graduate students, the theory is developed from scratch, the only prerequisite being a standard course in abstract algebra. Branching rules are built in from the outset resulting in an explanation and generalization of the link between modular branching rules and crystal graphs for affine Kac-Moody algebras. The methods are purely algebraic, exploiting affine and cyclotomic Hecke algebras. For the first time in book form, the projective (or spin) representation theory is treated along the same lines as linear representation theory. The author is mainly concerned with modular representation theory, although everything works in arbitrary characteristic, and in case of characteristic 0 the approach is somewhat similar to the theory of Okounkov and Vershik, described here in chapter 2. For the sake of transparency, Kleshschev concentrates on symmetric and spin-symmetric groups, though the methods he develops are quite general and apply to a number of related objects. In sum, this unique book will be welcomed by graduate students and researchers as a modern account of the subject.
This book collects and coherently presents the research that has been undertaken since the author's previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.
This book is the second edition, whose original mission was to offer a new approach for students wishing to better understand the mathematical tenets that underlie the study of physics. This mission is retained in this book. The structure of the book is one that keeps pedagogical principles in mind at every level. Not only are the chapters sequenced in such a way as to guide the reader down a clear path that stretches throughout the book, but all individual sections and subsections are also laid out so that the material they address becomes progressively more complex along with the reader's ability to comprehend it. This book not only improves upon the first in many details, but it also fills in some gaps that were left open by this and other books on similar topics. The 350 problems presented here are accompanied by answers which now include a greater amount of detail and additional guidance for arriving at the solutions. In this way, the mathematical underpinnings of the relevant physics topics are made as easy to absorb as possible.
Capturing Adriano Garsia's unique perspective on essential topics in algebraic combinatorics, this book consists of selected, classic notes on a number of topics based on lectures held at the University of California, San Diego over the past few decades. The topics presented share a common theme of describing interesting interplays between algebraic topics such as representation theory and elegant structures which are sometimes thought of as being outside the purview of classical combinatorics. The lectures reflect Garsia's inimitable narrative style and his exceptional expository ability. The preface presents the historical viewpoint as well as Garsia's personal insights into the subject matter. The lectures then start with a clear treatment of Alfred Young's construction of the irreducible representations of the symmetric group, seminormal representations and Morphy elements. This is followed by an elegant application of SL(2) representations to algebraic combinatorics. The last two lectures are on heaps, continued fractions and orthogonal polynomials with applications, and finally there is an exposition on the theory of finite fields. The book is aimed at graduate students and researchers in the field. |
You may like...
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,264
Discovery Miles 32 640
Modules over Discrete Valuation Rings
Piotr A. Krylov, Askar A. Tuganbaev
Hardcover
R4,053
Discovery Miles 40 530
Symmetries, Differential Equations and…
Victor G. Kac, Peter J. Olver, …
Hardcover
R4,234
Discovery Miles 42 340
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
The Psychology of Insecurity - Seeking…
Joseph P. Forgas, William D. Crano, …
Paperback
R1,336
Discovery Miles 13 360
Computation and Combinatorics in…
Elena Celledoni, Giulia Di Nunno, …
Hardcover
R4,961
Discovery Miles 49 610
|