![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Decomposing an abelian group into a direct sum of its subsets leads to results that can be applied to a variety of areas, such as number theory, geometry of tilings, coding theory, cryptography, graph theory, and Fourier analysis. Focusing mainly on cyclic groups, Factoring Groups into Subsets explores the factorization theory of abelian groups. The book first shows how to construct new factorizations from old ones. The authors then discuss nonperiodic and periodic factorizations, quasiperiodicity, and the factoring of periodic subsets. They also examine how tiling plays an important role in number theory. The next several chapters cover factorizations of infinite abelian groups; combinatorics, such as Ramsey numbers, Latin squares, and complex Hadamard matrices; and connections with codes, including variable length codes, error correcting codes, and integer codes. The final chapter deals with several classical problems of Fuchs. Encompassing many of the main areas of the factorization theory, this book explores problems in which the underlying factored group is cyclic.
The objectives of the volume are to direct the field s attention to the unique value of studying interactions between members of different groups and to offer the most up-to-date summaries of prominent and cutting-edge scholarship on this topic written by leading scholars in the field. A central theme of the volume is that improvement in intergroup relationships will only be possible if social scientists simultaneously take into account both the attitudes, beliefs, emotions, and actions of the different groups that shape the nature of intergroup relations. Understanding how members of different groups interact is critical beyond the value of understanding how majority groups behave and how minority groups respond in isolation. Indeed, as the book exemplifies, groups interpret their interaction differently, experiencing different social realities; approach interactions with different goals; and engage each other with different, and often non-compatible, means or strategies. These different realities, goals, and strategies can produce misunderstanding, suspicion, and conflict even when initial intentions are positive and cooperative. The book will be of interest to professionals and students in social psychology, sociology, social work, education, political science, and conflict management, as well as scholars, students, and practitioners interested in anti-bias education and prejudice reduction techniques and strategies.
Over the past 40 years, there has been a growing trend toward the utilization of teams for accomplishing work in organizations. Project teams, self-managed work teams and top management teams, among others have become a regular element in the corporation or military. This volume is intended to provide an overview of the current state of the art research on team effectiveness.
It is common for undergraduate and graduate students across various disciplines to be placed on teams and assigned group project research reports and presentations which require them to work together. For example a psychology course requires teams to develop, conduct, analyze and present the result of their experiments, a marketing course requires student project teams to prepare marketing plans and present their conclusions, and an organizational behavior course forms teams for the purpose of researching the cultures of different organizations and making presentations about their findings. This new guidebook will be a core text on how to help student project teams confront and successfully resolve issues, tasks and problems. Sections include conceptual material, stories and illustrations, and exercises. Students and teachers in Organizational Behavior, Management, Marketing and all psychology disciplines will find this book of interest.
This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cech compactification G of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then G contains no nontrivial finite groups. Also the ideal structure of G is investigated. In particular, one shows that for every infinite Abelian group G, G contains 22|G| minimal right ideals. In the third part, using the semigroup G, almost maximal topological and left topological groups are constructed and their ultrafilter semigroups are examined. Projectives in the category of finite semigroups are characterized. Also one shows that every infinite Abelian group with finitely many elements of order 2 is absolutely -resolvable, and consequently, can be partitioned into subsets such that every coset modulo infinite subgroup meets each subset of the partition. The book concludes with a list of open problems in the field. Some familiarity with set theory, algebra and topology is presupposed. But in general, the book is almost self-contained. It is aimed at graduate students and researchers working in topological algebra and adjacent areas.
The Psychology of Political Polarization was inspired by the notion that, to understand the momentum of radical political movements, it is important to understand the attitudes of individual citizens who support such movements. Leading political psychologists have contributed to this important book, in which they share their latest ideas about political polarization - a complex phenomenon that cannot be traced back to a single cause, and that is associated with intolerance, overconfidence, and irrational beliefs. The book explores the basis of political polarization as being how citizens think and feel about people with a different worldview, how they perceive minority groups, and how much they trust leaders and experts on pressing societal issues such as climate change, health, international relations, and poverty. The chapters are organized into two sections that examine what psychological processes and what social factors contribute to polarization among regular citizens. The book also describes practical strategies and interventions to depolarize people. The book offers a state-of-the-art introduction to the psychology of political polarization which will appeal to the academic market and political professionals.
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt construction for p-groups, p != 2, as well as Hilbert's irreducibility theorem and the large sieve inequality, are presented. The second half is devoted to rationality and rigidity criteria and their application in realizing certain groups as Galois groups of regular extensions of Q(T). While proofs are not carried out in full detail, the book contains a number of examples, exercises, and open problems.
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The concept of the 'ideal city' is, perhaps, more important today - when planners and architects are so firmly confined by considerations of our immediate environment - than ever before. Yet it is a concept which has profoundly influenced the western world throughout history, both as a regulative model and as an inspiration. Rosenau traces the progress of the concept from biblical sources through the hellenistic and Roman empires to the Renaissance and the later Age of Enlightenment, when the emphasis shifted from religious to social considerations. She goes on to discuss the resultant nineteenth-century ideal planning, when the idea of social betterment was approached with a specific and conscious effort. This book was first published in 1983.
Celebrity culture has a pervasive presence in our everyday lives -
perhaps more so than ever before. It shapes not simply the
production and consumption of media content, but also the social
values through which we experience the world. This collection
analyzes this phenomenon, bringing together essays which explore
celebrity across a range of media, cultural and political contexts.
Finite Coxeter groups and related structures arise naturally in several branches of mathematics, for example, Lie algebras or theory of knots and links. This is the first book which develops the character theory of finite Coxeter groups and Iwahori-Hecke algebras in a systematic way, ranging from classical results to recent developments.
An important monograph summarising the development of a classification system fo finite p-groups.
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti-Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel-Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.
The papers in this special issue apply two recent data analytic techniques to the study of family and close peer relationships. The Actor-Partner Interdependent Model incorporates the perspectives of both participants in a dyad into analyses that describe shared and unique views of the relationship. The Social Relations Model incorporates the perspectives of all members of a group into analyses that ascribe views unique to individuals and relationships, and views shared by the entire group. Developmental applications of techniques originally designed for concurrent interdependent data are described.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
The study of the symmetric groups forms one of the basic building blocks of modern group theory. This book is the first completely detailed and self-contained presentation of the wealth of information now known on the projective representations of the symmetric and alternating groups. Prerequisites are a basic familiarity with the elementary theory of linear representations and a modest background in modern algebra. The authors have taken pains to ensure that all the relevant algebraic and combinatoric tools are clearly explained in such a way as to make the book suitable for graduate students and research workers. After the pioneering work of Issai Schur, little progress was made for half a century on projective representations, despite considerable activity on the related topic of linear representations. However, in the last twenty years important new advances have spurred further research. This book develops both the early theory of Schur and then describes the key advances that the subject has seen since then. In particular the theory of Q-functions and skew Q-functions is extensively covered which is central to the development of the subject.
The study of close relationships is both a central topic in social psychology, and also one of the most dynamic and exciting. Each chapter in this reader is written by leading scholars in the area of relationships. Together, they reflect the diversity of the field and include both contemporary and key historical papers to give comprehensive coverage of social psychological research into the processes that govern the many relationships that are so central to our lives. Topics covered include relationship initiation and attraction, relationship development, cognition and emotion in ongoing relationships, interdependence, and relationship maintenance and deterioration. The volume also contains an introductory chapter by the editors, which sets the subject in its historical context, as well as reviewing the current state of knowledge in the field. Section introductions, discussion questions, suggestions for further reading and comprehensive indexes make this an ideal, user-friendly text for senior undergraduates and graduates in courses on close relationships.
Rings and Fields provides an accessible introduction to rings and fields that will give the reader an appreciation of the power of algebraic techniques to handle diverse and difficult problems. A review of the prerequisite mathematics is given at the start of the book. Dr Ellis presents his ideas clearly and practically. Rather than presenting theory in abstract terms, chapters begin by introducing a problem and then go on to develop the necessary algebraic techniques for its solution in a purposeful, lucid manner, using concrete mathematical and non-mathematical examples. Although prior knowledge of group theory is unnecessary to understand the rest of the book, for those interested there is a chapter which states the axiom for a group and proves the group theoretic results needed in Galois theory.
Business Psychology and Organizational Behaviour introduces principles and concepts in psychology and organizational behaviour with emphasis on relevance and applications. Well organised and clearly written, it draws on a sound theoretical and applied base, and utilizes real-life examples, theories, and research findings of relevance to the world of business and work. The new edition of this best-selling textbook has been revised and updated with expanded and new material, including: proactive personality and situational theory in personality; theory of purposeful work behaviour; emotional and social anxiety in communication; decision biases and errors; and right brain activity and creativity, to name a few. There are numerous helpful features such as learning outcomes, chapter summaries, review questions, a glossary, and a comprehensive bibliography. Illustrations of practice and relevant theory and research also take the reader through individual, group, and organizational perspectives. This is an essential textbook for undergraduates and postgraduates studying psychology and organizational behaviour. What is more, it can be profitably used on degree, diploma, professional, and short courses. It's also likely to be of interest to the reflective practitioner in work organizations.
Analyzing Group Interactions gives a comprehensive overview of the use of different methods for the analysis of group interactions. International experts from a range of different disciplines within the social sciences illustrate their step-by-step procedures of how they analyze interactions within groups and explain what kind of data and skills are needed to get started. Each method is discussed in the same, structured manner, focusing on each method's strengths and weaknesses, its applicability and requirements, and the precise workflow to "follow along" when analyzing group interactions with the respective method. The analyzing strategies covered in this book include ethnographical approaches, phenomenology, content analysis, documentary method, discourse analysis, grounded theory, social network analysis, quantitative ratings, and several triangulative and mixed-method research designs. This volume is recommended for researchers at all levels that need guidance with the complex task of analyzing group interactions. The unified structure throughout the book facilitates comparison across the different methods and helps with deciding on the approach to be taken.
Written for use in teaching and for self-study, this book provides a comprehensive and pedagogical introduction to groups, algebras, geometry, and topology. It assimilates modern applications of these concepts, assuming only an advanced undergraduate preparation in physics. It provides a balanced view of group theory, Lie algebras, and topological concepts, while emphasizing a broad range of modern applications such as Lorentz and Poincare invariance, coherent states, quantum phase transitions, the quantum Hall effect, topological matter, and Chern numbers, among many others. An example based approach is adopted from the outset, and the book includes worked examples and informational boxes to illustrate and expand on key concepts. 344 homework problems are included, with full solutions available to instructors, and a subset of 172 of these problems have full solutions available to students. |
You may like...
Noncommutative Spacetimes - Symmetries…
Paolo Aschieri, Marija Dimitrijevic, …
Hardcover
R1,755
Discovery Miles 17 550
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,682
Discovery Miles 26 820
|