Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
The book describes developments on some well-known problems regarding the relationship between orders of finite groups and that of their automorphism groups. It is broadly divided into three parts: the first part offers an exposition of the fundamental exact sequence of Wells that relates automorphisms, derivations and cohomology of groups, along with some interesting applications of the sequence. The second part offers an account of important developments on a conjecture that a finite group has at least a prescribed number of automorphisms if the order of the group is sufficiently large. A non-abelian group of prime-power order is said to have divisibility property if its order divides that of its automorphism group. The final part of the book discusses the literature on divisibility property of groups culminating in the existence of groups without this property. Unifying various ideas developed over the years, this largely self-contained book includes results that are either proved or with complete references provided. It is aimed at researchers working in group theory, in particular, graduate students in algebra.
Ah Love Could you and I with Him consl?ire To grasp this sorry Scheme of things entIre' KHAYYAM People investigating algebraic groups have studied the same objects in many different guises. My first goal thus has been to take three different viewpoints and demonstrate how they offer complementary intuitive insight into the subject. In Part I we begin with a functorial idea, discussing some familiar processes for constructing groups. These turn out to be equivalent to the ring-theoretic objects called Hopf algebras, with which we can then con struct new examples. Study of their representations shows that they are closely related to groups of matrices, and closed sets in matrix space give us a geometric picture of some of the objects involved. This interplay of methods continues as we turn to specific results. In Part II, a geometric idea (connectedness) and one from classical matrix theory (Jordan decomposition) blend with the study of separable algebras. In Part III, a notion of differential prompted by the theory of Lie groups is used to prove the absence of nilpotents in certain Hopf algebras. The ring-theoretic work on faithful flatness in Part IV turns out to give the true explanation for the behavior of quotient group functors. Finally, the material is connected with other parts of algebra in Part V, which shows how twisted forms of any algebraic structure are governed by its automorphism group scheme."
Within the last decade, semigroup theoretical methods have occurred naturally in many aspects of ring theory, algebraic combinatorics, representation theory and their applications. In particular, motivated by noncommutative geometry and the theory of quantum groups, there is a growing interest in the class of semigroup algebras and their deformations. This work presents a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These general results are then applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have been recently intensively studied. Several concrete constructions are described in full detail, in particular intriguing classes of quadratic algebras and algebras related to group rings of polycyclic-by-finite groups. These give new classes of Noetherian algebras of small Gelfand-Kirillov dimension. The focus is on the interplay between their combinatorics and the algebraic structure. This yields a rich resource of examples that are of interest not only for the noncommutative ring theorists, but also for researchers in semigroup theory and certain aspects of group and group ring theory. Mathematical physicists will find this work of interest owing to the attention given to applications to the Yang-Baxter equation.
-Number one text for depth and comprehensive coverage: detailed analysis of existing knowledge and practice -Comprehensively updated in 7th edition with latest research findings, theoretical developments and applications to practice. -Well structured and easily navigable: topic areas clearly defined and packaged to fit course delivery -Unmatched authority: highly recognized author and five previously successful editions -Links theory to practice to help students learn and apply key skills -Offers a strong UK-originated alternative to other US-oriented texts -Flexible and cross-disciplinary: applies to a broad range of professional roles and contexts
Brings needed focus diversity and inclusion to the discipline of family communication. Suitable for advanced courses in family communication and family studies.
This book discusses the origin of graph theory from its humble beginnings in recreational mathematics to its modern setting or modeling communication networks, as is evidenced by the World Wide Web graph used by many Internet search engines. The second edition of the book includes recent developments in the theory of signed adjacency matrices involving the proof of sensitivity conjecture and the theory of Ramanujan graphs. In addition, the book discusses topics such as Pick's theorem on areas of lattice polygons and Graham-Pollak's work on addressing of graphs. The concept of graph is fundamental in mathematics and engineering, as it conveniently encodes diverse relations and facilitates combinatorial analysis of many theoretical and practical problems. The text is ideal for a one-semester course at the advanced undergraduate level or beginning graduate level.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.
This textbook provides an introduction to representations of general -algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of -algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded -algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensatze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.
In recent times, group theory has found wider applications in various fields of algebra and mathematics in general. But in order to apply this or that result, you need to know about it, and such results are often diffuse and difficult to locate, necessitating that readers construct an extended search through multiple monographs, articles, and papers. Such readers must wade through the morass of concepts and auxiliary statements that are needed to understand the desired results, while it is initially unclear which of them are really needed and which ones can be dispensed with. A further difficulty that one may encounter might be concerned with the form or language in which a given result is presented. For example, if someone knows the basics of group theory, but does not know the theory of representations, and a group theoretical result is formulated in the language of representation theory, then that person is faced with the problem of translating this result into the language with which they are familiar, etc. Infinite Groups: A Roadmap to Some Classical Areas seeks to overcome this challenge. The book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups. Features An excellent resource for a subject formerly lacking an accessible and in-depth reference Suitable for graduate students, PhD students, and researchers working in group theory Introduces the reader to the most important methods, ideas, approaches, and constructions in infinite group theory.
The book consists of articles based on the XXXVII Bialowieza Workshop on Geometric Methods in Physics, 2018. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. This edition of the workshop featured a special session dedicated to Professor Daniel Sternheimer on the occasion of his 80th birthday. The previously unpublished papers present cutting-edge current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past seven years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics comprising a series of advanced lectures for graduate students and early-career researchers. The book also includes abstracts of the five lecture series that were given at the seventh school.
First book on BCC algebras and first to gather the research in one place. Appeals to researchers interested in algebra, the largest topic group of mathematics researchers No competition on this topic.
This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves of Killing vector fields, presenting both classical and modern results, some very recent, many of which are due to the authors. The main focus is on the class of Riemannian manifolds with homogeneous geodesics and on some of its important subclasses. To keep the exposition self-contained the book also includes useful general results not only on geodesic orbit manifolds, but also on smooth and Riemannian manifolds, Lie groups and Lie algebras, homogeneous Riemannian manifolds, and compact homogeneous Riemannian spaces. The intended audience is graduate students and researchers whose work involves differential geometry and transformation groups.
This book explores how different social psychology theories and concepts can be applied to practice. Considering theories from attribution theory to coercion theory, social identity theories to ostracism, the authors offer a greater understanding and appreciation of the ways in which social psychology can contribute to forensic practice. The book argues that social psychology is useful for carrying out assessments (including risk assessments), formulations, and interventions with clients in forensic settings, as well as for psychological consultation, training, and the development of services. These theories are also important when understanding multi-disciplinary and multi-agency working, staff-client relationships, and peer-to-peer relationships. Through illustrative composite case examples, taken from the authors' experiences in forensic settings, the chapters demonstrate effective ways to pursue a theoretically informed practice. Exploring a broad range of theories and a timely topic, Social Psychology in Forensic Practice will interest a wide readership including graduate and undergraduate students and researchers in criminology, sociology, and forensic, social and clinical psychology. It will also be of practical use to health professionals and non-health professionals working in forensic settings as well as policy makers and others commissioning forensic services.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Aix-Marseille Universite, France Katrin Wendland, Trinity College Dublin, Dublin, Ireland Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel Lopez-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.
* Examines fragments of real multimodal communication, which provides insights on the universal mechanisms and devices of power and social influence * Enhances the readers awareness of how people may use multimodal communication to achieve and maintain power, and of how, by their own body, they may influence others and defend themselves from their influence, making this essential reading for students and academics * Refers to a variety of contexts in which communication is used and adapted, including in everyday life, at work, at school, and in politics to show the similarities and differences in these environments
- Topic has had a huge surge of interest since 2000 due to the greatly increased incidence of social communication disorders - Covers theory and evidence-based practice, making it a rounded and solid resource for students and professionals
This book gives an introductory exposition of the theory of hyperfunctions and regular singularities. This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize.
- well organized and comprehensive three-part structure - features impressive roster of well-known contributors
- well organized and comprehensive three-part structure - features impressive roster of well-known contributors
The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.
Bringing together trust research, rhetoric, ethnomethodology and conversation analysis, this book formulates an analytical program for conceptualizing and defining trustworthiness as an empirical research object in social interaction. Revisiting Trustworthiness in Social Interaction examines trustworthiness as a relational and dynamic concept. It reviews sociological and rhetorical approaches to the study of trustworthiness and respecifies it as an interactional phenomenon displayed, tested and negotiated by participants in social interaction. It identifies four participant orientations of trustworthiness that may be foregrounded in peoples' dynamic identity projects, and it defines the phenomena 'character-bound displays' and 'sequential negotiation of character', both indicative of participants' orientation to trustworthiness. In this way, the book turns the theoretical concept of trustworthiness into an empirical object of interaction analysis, pointing to a vast number of interactional indicators, which allow interaction analysts to explore if and how interactants orient to trustworthiness in an encounter. Exemplary cases from both mundane and institutional encounters are analyzed using ethnomethodological multimodal conversation analysis showing how trustworthiness is done, challenges, achived, negotiated and lost in interaction. The intended audiences are scholars of conversation analysis, ethnomethodology, rhetoric and the social sciences, especially communication, organizational and leadership studies, and their students.
This ground-breaking volume presents a unique contribution to the development of social and political psychology both in Turkey and globally, providing a complex analysis of intergroup relations in the diverse Turkish context. Turkey is home to a huge variety of social, ethnic and religious groups and hosts the largest number of refugees in the world. This diversity creates a unique opportunity to understand how powerful forces of ethnicity, migration and political ideology shape intergroup processes and intergroup relations. Bringing together novel research findings, the international collection of authors explore everything from disability, age and gender, Kurdish and Armenian relations as "traditional minorities", the recent emergence of a "new minority" of Syrian refugees and Turkey's complex political history. The theories and paradigms considered in the book - social identity, intergroup contact, integrated threat, social representations - are leading approaches in social and political psychology, but the research presented tests these approaches in the context of a very diverse and dynamic non-WEIRD (Western, Educated, Industrialized, Rich and Democratic) society, with the goal of contributing toward the development of a more intercultural and democratic social and political psychology. Bringing together cutting-edge research and providing important insights into the psychological underpinnings of a singular societal situation from a variety of perspectives, this book is essential reading for students studying the psychology, politics and social science of intergroup relations, as well as practitioners interested in conflict resolution.
The De Gruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels. |
You may like...
Geometric Methods in Physics XXXV…
Piotr Kielanowski, Anatol Odzijewicz, …
Hardcover
R2,821
Discovery Miles 28 210
Combinatorial and Additive Number Theory…
Melvyn B Nathanson
Hardcover
R5,888
Discovery Miles 58 880
Symmetries and Applications of…
Albert C.J. Luo, Rafail K. Gazizov
Hardcover
R3,540
Discovery Miles 35 400
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,490
Discovery Miles 44 900
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,264
Discovery Miles 32 640
|