![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
The notion of right-ordered groups is fundamental in theories of I-groups, ordered groups, torsion-free groups, and the theory of zero-divisors free rings, as well as in theoretical physics. Right-Ordered Groups is the first book to provide a systematic presentation of right-ordered group theory, describing all known and new results in the field. The volume addresses topics such as right-ordered groups and order permutation groups, the system of convex subgroups of a right-ordered group, and free products of right-ordered groups.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
This book differentiates between categories of adolescent male offending and explores the behavioural and social profiles of those who become involved in violent offending and organized crime. Using self-reported and arrest data, the book examines key stages of male adolescent offending with a view to early recognition of behaviours that leave young men vulnerable to criminal exploitation and the escalation of violence. It also explains the importance of understanding crime motivations, how young men view themselves when they offend, and the emotions that they experience. Rather than looking at violent offending as a single category of behavior, the book helps readers differentiate between types of adolescent violence and to understand the underlying psychological and social causes. It offers an insight into the journey of young people who are criminally exploited and those who become involved in committing acts of serious violence and organized crime. It does so by using data from official records, self-reported offending, and the narratives of young people. Each chapter focuses on a particular stage of offending with a view to early identification, support, and diversion. Pathways to Adolescent Male Violent Offending is aimed at practitioners in youth offending services, youth work, policing, and education. It will also be useful for students of forensic and investigative psychology, criminal justice, policing, and child and adolescent mental health.
Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.
The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena."
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.
The volume is a follow-up to the INdAM meeting "Special metrics and quaternionic geometry" held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5-8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon's profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
This volume is based on the presentations and discussions of a national symposium on "Couples in Conflict" that focused on family issues. A common thread throughout is that constructive conflict and negotiation are beneficial for relationships. Together, the chapters provide a foundation for thinking about creative ways in which our society can work to prevent or minimize destructive couple conflict and to enhance couples' abilities to constructively handle their differences. Divided into four parts, this book: *addresses the societal and bioevolutionary underpinnings of couple conflict; *presents the interpersonal roots of couple conflict and the consequences for individuals and couples; *discusses what effects couple conflict have on children and how individual differences in children moderate these effects; and *outlines the issue of policies and programs that address couple conflict. This book concludes with an essay that pulls these four themes together and points to new directions for research and program efforts.
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
On the 26th of November 1992 the organizing committee gathered together, at Luigi Salce's invitation, for the first time. The tradition of abelian groups and modules Italian conferences (Rome 77, Udine 85, Bressanone 90) needed to be kept up by one more meeting. Since that first time it was clear to us that our goal was not so easy. In fact the main intended topics of abelian groups, modules over commutative rings and non commutative rings have become so specialized in the last years that it looked really ambitious to fit them into only one meeting. Anyway, since everyone of us shared the same mathematical roots, we did want to emphasize a common link. So we elaborated the long symposium schedule: three days of abelian groups and three days of modules over non commutative rings with a two days' bridge of commutative algebra in between. Many of the most famous names in these fields took part to the meeting. Over 140 participants, both attending and contributing the 18 Main Lectures and 64 Communications (see list on page xv) provided a really wide audience for an Algebra meeting. Now that the meeting is over, we can say that our initial feeling was right.
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
Growing specialization and diversification have brought a hor'st of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are sudden ly seen to be related. Further, the kind and level of sophistication of mathematics applied invarious sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. This programme, Mathematics and Its Applications, is devoted to such (new) interrelations as exempli gratia: - a central concept which plays an important role in several different mathematical andjor scientific specialized areas; - new applications of the results and ideas from one area of scien tific endeavor into another; - influences which the results, problems and concepts of one field of enquiry have and have had on the development of another."
Drawing on their extensive teaching experience, the authors bring the content to life using humorous and engaging language and show students how the principles of behavior relate to their everyday lives. The text's tried-and-true pedagogy make the content as clear as possible without oversimplifying the concepts. Each chapter includes study objectives, key terms, and review questions that encourage students to check their understanding before moving on, and incorporated throughout the text are real-world examples and case studies to illustrate key concepts and principles.This edition also features a new full-color design and nearly 400 color figures, tables, and graphs. The text is carefully tailored to the length of a standard academic semester and how behavior analysis courses are taught, with each section corresponding to a week's worth of coursework, and each chapter is integrated with the task list for Behavior Analyst Certification Board (BACB) certifications.
Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance."
This book is an introduction to the theory of noncommutative algebra. The core of the book is suitable for a one-semester course for graduate students. The approach, which is more homological than ring-theoretic, clarifies the subject and its relation to other important areas of mathematics, including K-theory, homological algebra, and representation theory. The main part of the book begins with a brief review of background material; the first chapter covers the basics of semisimple modules and rings, including the Wedderburn structure theorem; chapter two discusses the Jacobson radical, giving several different views; chapter three develops the theory of central simple algebras, including proofs of the Skolem-Noether and Double Centralizer theorems, with two famous theorems of Wedderburn and Frobenius given as applications; and chapter four is an introduction to the Brauer group and its relation to cohomology. The remaining chapters introduce several special topics: the notion of primitive ring is developed along lines parallel to that of simple rings; the representation theory of finite groups is combined with the Wedderburn Structure Theorem to prove Burnside's Theorem; the global dimension of a ring is studied using Kaplansky's elementary point of view; and the Brauer group of a commutative ring is introduced. Problems throughout the book provide concrete examples, applications and amplifications of the text; a set of supplementary problems explores further topics and can serve as starting points for student projects.
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level; they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: ..". it contains all the major results on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: ..". this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: ..". since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. The book concentrates on theoretical aspects, but also includes applications in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. Basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages are reviewed and introduced, as well as certain fuzzy ideals of a semigroup and advanced characterizations and properties of fuzzy semigroups.
Integral Closure gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. The overall goal is to determine and analyze the equations of the assemblages of the set of solutions that arise under various processes and algorithms. It gives a comprehensive treatment of Rees algebras and multiplicity theory - while pointing to applications in many other problem areas. Its main goal is to provide complexity estimates by tracking numerically invariants of the structures that may occur. This book is intended for graduate students and researchers in the fields mentioned above. It contains, besides exercises aimed at giving insights, numerous research problems motivated by the developments reported.
The purpose of this book is twofold. First, it is written to be a textbook for a graduate level course on Galois theory or field theory. Second, it is designed to be a reference for researchers who need to know field theory. The book is written at the level of students who have familiarity with the basic concepts of group, ring, vector space theory, including the Sylow theorems, factorization in polynomial rings, and theorems about bases of vector spaces. This book has a large number of examples and exercises, a large number of topics covered, and complete proofs given for the stated results. To help readers grasp field.
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world's leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions: Terrorism in Historical Context Definitions Understanding and Explaining Terrorism Terrorist Movements Terrorist Behaviour Counterterrorism Current and Future Trends in Terrorism. This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
Written by one of the subject's foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah's seminal work on the un decidability in ZFC of Whitehead's Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader's comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject's further development.
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference "New Pathways between Group Theory and Model Theory," which took place February 1-4, 2016, in Mulheim an der Ruhr, Germany, in honor of the editors' colleague Rudiger Goebel. This publication is dedicated to Professor Goebel, who passed away in 2014. He was one of the leading experts in Abelian group theory. |
You may like...
Topology and Geometric Group Theory…
Michael W. Davis, James Fowler, …
Hardcover
Latin Squares - New Developments in the…
Jozsef Denes, A. Donald Keedwell
Hardcover
R1,961
Discovery Miles 19 610
Introduction to Political Psychology
Martha L. Cottam, Elena Mastors, …
Hardcover
R5,387
Discovery Miles 53 870
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,540
Discovery Miles 45 400
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Yakov Berkovich; Zvonimir Janko: Groups…
Yakov G Berkovich, Zvonimir Janko
Hardcover
R5,738
Discovery Miles 57 380
|