![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
Integral Closure gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. The overall goal is to determine and analyze the equations of the assemblages of the set of solutions that arise under various processes and algorithms. It gives a comprehensive treatment of Rees algebras and multiplicity theory - while pointing to applications in many other problem areas. Its main goal is to provide complexity estimates by tracking numerically invariants of the structures that may occur. This book is intended for graduate students and researchers in the fields mentioned above. It contains, besides exercises aimed at giving insights, numerous research problems motivated by the developments reported.
The purpose of this book is twofold. First, it is written to be a textbook for a graduate level course on Galois theory or field theory. Second, it is designed to be a reference for researchers who need to know field theory. The book is written at the level of students who have familiarity with the basic concepts of group, ring, vector space theory, including the Sylow theorems, factorization in polynomial rings, and theorems about bases of vector spaces. This book has a large number of examples and exercises, a large number of topics covered, and complete proofs given for the stated results. To help readers grasp field.
Written by one of the subject's foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah's seminal work on the un decidability in ZFC of Whitehead's Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader's comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject's further development.
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world's leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions: Terrorism in Historical Context Definitions Understanding and Explaining Terrorism Terrorist Movements Terrorist Behaviour Counterterrorism Current and Future Trends in Terrorism. This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference "New Pathways between Group Theory and Model Theory," which took place February 1-4, 2016, in Mulheim an der Ruhr, Germany, in honor of the editors' colleague Rudiger Goebel. This publication is dedicated to Professor Goebel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
The main TOPIC of this book is that of Groebner bases and their applications. The main PURPOSE of this book is that of bridging the current gap in the literature between theory and real computation. The book can be used by teachers and students alike as a comprehensive guide to both the theory and the practice of Computational Commutative Algebra. It has been made as self-contained as possible, and thus is ideally suited as a textbook for graduate or advanced undergraduate courses. Numerous applications are described, covering fields as disparate as algebraic geometry and financial markets. To aid a deeper understanding of these applications there are 44 tutorials aimed at illustrating how the theory can be used in these cases. The computational aspects of the tutorials can be carried out with the computer algebra system CoCoA, an introduction to which appears in an appendix. Besides the tutorials there are plenty of exercises, some of a theoretical nature and others more practical.
Drawing on their extensive teaching experience, the authors bring the content to life using humorous and engaging language and show students how the principles of behavior relate to their everyday lives. The text's tried-and-true pedagogy make the content as clear as possible without oversimplifying the concepts. Each chapter includes study objectives, key terms, and review questions that encourage students to check their understanding before moving on, and incorporated throughout the text are real-world examples and case studies to illustrate key concepts and principles.This edition also features a new full-color design and nearly 400 color figures, tables, and graphs. The text is carefully tailored to the length of a standard academic semester and how behavior analysis courses are taught, with each section corresponding to a week's worth of coursework, and each chapter is integrated with the task list for Behavior Analyst Certification Board (BACB) certifications.
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Groebner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.
The book gives a comprehensive account of the basic algebraic properties of the classical groups over rings. Much of the theory appears in book form for the first time, and most proofs are given in detail. The book also includes a revised and expanded version of DieudonnA(c)'s classical theory over division rings. The authors analyse congruence subgroups, normal subgroups and quotient groups, they describe their isomorphisms and investigate connections with linear and hermitian K-theory. A first insight is offered through the simplest case of the general linear group. All the other classical groups, notably the symplectic, unitary and orthogonal groups, are dealt with uniformly as isometry groups of generalized quadratic modules. New results on the unitary Steinberg groups, the associated K2-groups and the unitary symbols in these groups lead to simplified presentation theorems for the classical groups. Related material such as the K-theory exact sequences of Bass and Sharpe and the Merkurjev-Suslin theorem is outlined. "From" "the foreword by J. DieudonnA(c): " "All mathematicians interested in classical groups should be grateful to these two outstanding investigators for having brought together old and new results (many of them their own) into a superbly organized whole. I am confident that their book will remain for a long time the standard reference in the theory."
Graph models are extremely useful for a large number of applications as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones, social networks - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. The focus of this highly self-contained book is on homomorphisms and endomorphisms, matrices and eigenvalues.
The analysis of orthogonal polynomials associated with general weights has been a major theme in classical analysis this century. The use of potential theory since the early 1980¿s had a dramatic influence on the development of orthogonal polynomials associated with weights on the real line. For many applications of orthogonal polynomials, for example in approximation theory and numerical analysis, it is not asymptotics but certain bounds that are most important. In this monograph, the authors define and discuss their classes of weights, state several of their results on Christoffel functions, Bernstein inequalities, restricted range inequalities, and record their bounds on the orthogonal polynomials as well as their asymptotic results. This book will be of interest to researchers in approximation theory and potential theory, as well as in some branches of engineering.
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n:::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauss had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,"
Algebraic K-Theory plays an important role in many areas of modern mathematics: most notably algebraic topology, number theory, and algebraic geometry, but even including operator theory. The broad range of these topics has tended to give the subject an aura of inapproachability. This book, based on a course at the University of Maryland in the fall of 1990, is intended to enable graduate students or mathematicians working in other areas not only to learn the basics of algebraic K-Theory, but also to get a feel for its many applications. The required prerequisites are only the standard one-year graduate algebra course and the standard introductory graduate course on algebraic and geometric topology. Many topics from algebraic topology, homological algebra, and algebraic number theory are developed as needed. The final chapter gives a concise introduction to cyclic homology and its interrelationship with K-Theory.
This book is the first monograph on the theory of endomorphism
rings of Abelian groups. The theory is a rapidly developing area of
algebra and has its origin in the theory of operators of vector
spaves. The text contains additional information on groups
themselves, introducing new concepts, methods, and classes of
groups. All the main fields of the theory of endomorphism rings of
Abelian groups from early results to the most recent are covered.
Neighbouring results on endomorphism rings of modules are also
mentioned. -all the necessary definitions and formulations of assertions on
Abelian groups, rings, and modules are gathered in the first two
sections;
The topic of this book is finite group actions and their use in order to approach finite unlabeled structures by defining them as orbits of finite groups of sets. Well-known examples are graph, linear codes, chemical isomers, spin configurations, isomorphism classes of combinatorial designs etc.The second edition is an extended version and puts more emphasis on applications to the constructive theory of finite structures. Recent progress in this field, in particular in design and coding theory, is described.This book will be of great use to researchers and graduate students.
Symmetry and Economic Invariance: An Introduction explores how symmetry and invariance of economic models can provide insights into their properties. While the professional economist is nowadays adept at many of the mathematical techniques used in static and dynamic optimization models, group theory is still not among his or her repertoire of tools. The authors aim to show that group theoretic methods form a natural extension of the techniques commonly used in economics and that they can be easily mastered.
This book differentiates between categories of adolescent male offending and explores the behavioural and social profiles of those who become involved in violent offending and organized crime. Using self-reported and arrest data, the book examines key stages of male adolescent offending with a view to early recognition of behaviours that leave young men vulnerable to criminal exploitation and the escalation of violence. It also explains the importance of understanding crime motivations, how young men view themselves when they offend, and the emotions that they experience. Rather than looking at violent offending as a single category of behavior, the book helps readers differentiate between types of adolescent violence and to understand the underlying psychological and social causes. It offers an insight into the journey of young people who are criminally exploited and those who become involved in committing acts of serious violence and organized crime. It does so by using data from official records, self-reported offending, and the narratives of young people. Each chapter focuses on a particular stage of offending with a view to early identification, support, and diversion. Pathways to Adolescent Male Violent Offending is aimed at practitioners in youth offending services, youth work, policing, and education. It will also be useful for students of forensic and investigative psychology, criminal justice, policing, and child and adolescent mental health.
The 1963 Gottingen notes of T. A. Springer are well-known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra. In the group-theoretical part use is made of some results from the theory of linear algebraic groups. The book will be useful to mathematicians interested in octonion algebras and Albert algebras, or in exceptional groups. It is suitable for use in a graduate course in algebra."
City, Region and Regionalism was first published in 1947.
Do large cities grow more or less rapidly than small ones? Why should the relationship between city size and population growth vary so much from one period to another? This book studies the process of population growth in a national set of cities, relating its findings to the theoretical concepts of urban geography. To test his ideas, the author studies the growth of cities in England and Wales between 1801 and 1911. His explanations draw strongly on the connection between growth and the adoption of innovations. He develops a model of innovation diffusions in a set of cities and, in support of this model, looks at the way in which three particular innovations - the telephone, building societies and gaslighting - spread amongst English towns in the nineteenth century. This book was first published in 1973.
Hall argues that 'London was the chief manufacturing centre of the country in 1861, and without doubt for centuries before that'. This book looks at industries in London over time from 1861. This book was first published in 1962.
Routledge Library Editions: The City reprints some of the most important works in urban studies published in the last century. For further information on this collection please email [email protected].
This book was first published in 1970.
This book explores how different social psychology theories and concepts can be applied to practice. Considering theories from attribution theory to coercion theory, social identity theories to ostracism, the authors offer a greater understanding and appreciation of the ways in which social psychology can contribute to forensic practice. The book argues that social psychology is useful for carrying out assessments (including risk assessments), formulations, and interventions with clients in forensic settings, as well as for psychological consultation, training, and the development of services. These theories are also important when understanding multi-disciplinary and multi-agency working, staff-client relationships, and peer-to-peer relationships. Through illustrative composite case examples, taken from the authors' experiences in forensic settings, the chapters demonstrate effective ways to pursue a theoretically informed practice. Exploring a broad range of theories and a timely topic, Social Psychology in Forensic Practice will interest a wide readership including graduate and undergraduate students and researchers in criminology, sociology, and forensic, social and clinical psychology. It will also be of practical use to health professionals and non-health professionals working in forensic settings as well as policy makers and others commissioning forensic services. |
You may like...
Basic Modern Algebra with Applications
Mahima Ranjan Adhikari, Avishek Adhikari
Hardcover
R2,552
Discovery Miles 25 520
Pseudo-Differential Operators…
Shahla Molahajloo, Stevan Pilipovic, …
Hardcover
p-Adic Methods and Their Applications
Andrew J. Baker, Roger J. Plymen
Hardcover
R2,001
Discovery Miles 20 010
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
|