![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
On the occasion of the 150th anniversary of Sophus Lie, an International Work shop "Modern Group Analysis: advanced analytical and computational methods in mathematical physics" has been organized in Acireale (Catania, Sicily, October 27 31, 1992). The Workshop was aimed to enlighten the present state ofthis rapidly expanding branch of applied mathematics. Main topics of the Conference were: * classical Lie groups applied for constructing invariant solutions and conservation laws; * conditional (partial) symmetries; * Backlund transformations; * approximate symmetries; * group analysis of finite-difference equations; * problems of group classification; * software packages in group analysis. The success of the Workshop was due to the participation of many experts in Group Analysis from different countries. This book consists of selected papers presented at the Workshop. We would like to thank the Scientific Committee for the generous support of recommending invited lectures and selecting the papers for this volume, as well as the members of the Organizing Committee for their help. The Workshop was made possible by the financial support of several sponsors that are listed below. It is also a pleasure to thank our colleague Enrico Gregorio for his invaluable help of this volume.
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. The book has been designed as a supplement to the author's textbook Group Theory for Physicists, also published by World Scientific. Together these two books can be used in a course on group theory for first-year graduate students in physics, especially theoretical physics. They are also suitable for some graduate students in theoretical chemistry.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
From reviews of the first edition: "The important feature of the present book is that it starts from the beginning (with only a very modest knowledge assumed) and covers all important topics... The book is very carefully organized [and] ends with 20 pages of useful historic comments. Such a comprehensive and carefully written treatment of fundamentals of the theory will certainly be a basic reference and text book in the future." -- Newsletter of the EMS "This is a fundamental book and none, beginner or expert, could afford to ignore it. Some results are really difficult to be found in other monographs, while others are for the first time included in a book." -- Mathematica "Each chapter begins with an excellent summary of the content and ends with an exercise section... This is really an outstanding book, well written and beautifully produced. It is both a graduate text and a monograph, so it can be recommended to graduate students as well as to specialists." -- Publicationes Mathematicae Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simplyconnected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond.
Written by the recipient of the 1997 MAA Chauvenet Prize for mathematical exposition, this book tells how the theory of Lie groups emerged from a fascinating cross fertilization of many strains of 19th and early 20th century geometry, analysis, mathematical physics, algebra and topology. The reader will meet a host of mathematicians from the period and become acquainted with the major mathematical schools. The first part describes the geometrical and analytical considerations that initiated the theory at the hands of the Norwegian mathematician, Sophus Lie. The main figure in the second part is Weierstrass' student Wilhelm Killing, whose interest in the foundations of non-Euclidean geometry led to his discovery of almost all the central concepts and theorems on the structure and classification of semisimple Lie algebras. The scene then shifts to the Paris mathematical community and Elie Cartan's work on the representation of Lie algebras. The final part describes the influential, unifying contributions of Hermann Weyl and their context: Hilbert's Göttingen, general relativity and the Frobenius-Schur theory of characters. The book is written with the conviction that mathematical understanding is deepened by familiarity with underlying motivations and the less formal, more intuitive manner of original conception. The human side of the story is evoked through extensive use of correspondence between mathematicians. The book should prove enlightening to a broad range of readers, including prospective students of Lie theory, mathematicians, physicists and historians and philosophers of science.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states forthe relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potentialapplications, from the quantum physically oriented, likethe quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable."
Occasioned by the international conference "Rings and Factorizations" held in February 2018 at University of Graz, Austria, this volume represents a wide range of research trends in the theory of commutative and non-commutative rings and their modules, including multiplicative ideal theory, Dedekind and Krull rings and their generalizations, rings of integer valued-polynomials, topological aspects of ring theory, factorization theory in rings and semigroups and direct-sum decompositions of modules. The volume will be of interest to researchers seeking to extend or utilize work in these areas as well as graduate students wishing to find entryways into active areas of current research in algebra. A novel aspect of the volume is an emphasis on how diverse types of algebraic structures and contexts (rings, modules, semigroups, categories) may be treated with overlapping and reinforcing approaches.
Group theory is one of the most fundamental branches of mathematics. This volume of the Encyclopaedia is devoted to two important subjects within group theory. The first part of the book is concerned with infinite groups. The authors deal with combinatorial group theory, free constructions through group actions on trees, algorithmic problems, periodic groups and the Burnside problem, and the structure theory for Abelian, soluble and nilpotent groups. They have included the very latest developments; however, the material is accessible to readers familiar with the basic concepts of algebra. The second part treats the theory of linear groups. It is a genuinely encyclopaedic survey written for non-specialists. The topics covered includethe classical groups, algebraic groups, topological methods, conjugacy theorems, and finite linear groups. This book will be very useful to allmathematicians, physicists and other scientists including graduate students who use group theory in their work.
This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni
Contemporary politics is mass-communication politics. Politicians are not only seen and heard, they are seen and heard in close-up through television appearances, speeches, interviews, and on social media. In this book, the authors analyse the ways in which politicians communicate with each other, the media, and the electorate; they also discuss the implications of contemporary political discourse on the democratic process as a whole. Politicians in interviews are typically castigated for their evasiveness. However, microanalytic research shows that there is more to political discourse than this apparent ambiguity. This book reveals how equivocation, interruptions, and personal antagonism can offer valuable insights into a politician's communicative style. The authors review their empirical research not only on political interviews, but also on speeches, parliamentary debates, and political journalism. Further insights include how political speakers interact with their audiences, how party leaders engage in adversarial discourse at PMQs, and how the spoken messages of politicians can be affected by modern journalistic editing techniques. Thereby, this research generates greater awareness of communicative practices in a diverse range of political contexts. While the interviews and parliamentary debates analysed pertain to UK politics, the speeches also draw on the USA, and European and Far Eastern nations. This engaging book is a fascinating resource for students and academics in psychology, politics, communication, and other related disciplines such as sociology and linguistics. The research is also extremely relevant to policy makers and practitioners in politics and political journalism.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
Polycyclic groups are built from cyclic groups in a specific way. They arise in many contexts within group theory itself but also more generally in algebra, for example in the theory of Noetherian rings. The first half of this book develops the standard group theoretic techniques for studying polycyclic groups and the basic properties of these groups. The second half then focuses specifically on the ring theoretic properties of polycyclic groups and their applications, often to purely group theoretic situations. The book is intended to be a study manual for graduate students and researchers coming into contact with polycyclic groups, where the main lines of the subject can be learned from scratch. Thus it has been kept short and readable with a view that it can be read and worked through from cover to cover. At the end of each topic covered there is a description without proofs, but with full references, of further developments in the area. An extensive bibliography then concludes the book.
Ever since its introduction around 1960 by Kirillov, the orbit method has played a major role in representation theory of Lie groups and Lie algebras. This book contains the proceedings of a conference held from August 29 to September 2, 1988, at the University of Copenhagen, about "the orbit method in representation theory." It contains ten articles, most of which are original research papers, by well-known mathematicians in the field, and it reflects the fact that the orbit method plays an important role in the representation theory of semisimple Lie groups, solvable Lie groups, and even more general Lie groups, and also in the theory of enveloping algebras.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
This is a volume of research articles related to finite groups. Topics covered include the classification of finite simple groups, the theory of p-groups, cohomology of groups, representation theory and the theory of buildings and geometries. As well as more than twenty original papers on the latest developments, which will be of great interest to specialists, the volume contains several expository articles, from which students and non-experts can learn about the present state of knowledge and promising directions for further research. The Finite Groups 2003 conference was held in honor of John Thompson. The profound influence of his fundamental contributions is clearly visible in this collection of papers dedicated to him.
Brauer had already introduced the defect of a block and opened
the way towards a classification by solving all the problems in
defects zero and one, and by providing some evidence for the
finiteness of the set of blocks with a given defect. In 1959 he
discovered the defect group, and in 1964 Dade determined the blocks
with cyclic defect groups.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions. In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms. One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.
The notion of right-ordered groups is fundamental in theories of I-groups, ordered groups, torsion-free groups, and the theory of zero-divisors free rings, as well as in theoretical physics. Right-Ordered Groups is the first book to provide a systematic presentation of right-ordered group theory, describing all known and new results in the field. The volume addresses topics such as right-ordered groups and order permutation groups, the system of convex subgroups of a right-ordered group, and free products of right-ordered groups.
Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.
This book differentiates between categories of adolescent male offending and explores the behavioural and social profiles of those who become involved in violent offending and organized crime. Using self-reported and arrest data, the book examines key stages of male adolescent offending with a view to early recognition of behaviours that leave young men vulnerable to criminal exploitation and the escalation of violence. It also explains the importance of understanding crime motivations, how young men view themselves when they offend, and the emotions that they experience. Rather than looking at violent offending as a single category of behavior, the book helps readers differentiate between types of adolescent violence and to understand the underlying psychological and social causes. It offers an insight into the journey of young people who are criminally exploited and those who become involved in committing acts of serious violence and organized crime. It does so by using data from official records, self-reported offending, and the narratives of young people. Each chapter focuses on a particular stage of offending with a view to early identification, support, and diversion. Pathways to Adolescent Male Violent Offending is aimed at practitioners in youth offending services, youth work, policing, and education. It will also be useful for students of forensic and investigative psychology, criminal justice, policing, and child and adolescent mental health.
The notion of group is fundamental in our days, not only in mathematics, but also in classical mechanics, electromagnetism, theory of relativity, quantum mechanics, theory of elementary particles, etc. This notion has developed during a century and this development is connected with the names of great mathematicians as E. Galois, A. L. Cauchy, C. F. Gauss, W. R. Hamilton, C. Jordan, S. Lie, E. Cartan, H. Weyl, E. Wigner, and of many others. In mathematics, as in other sciences, the simple and fertile ideas make their way with difficulty and slowly; however, this long history would have been of a minor interest, had the notion of group remained connected only with rather restricted domains of mathematics, those in which it occurred at the beginning. But at present, groups have invaded almost all mathematical disciplines, mechanics, the largest part of physics, of chemistry, etc. We may say, without exaggeration, that this is the most important idea that occurred in mathematics since the invention of infinitesimal calculus; indeed, the notion of group expresses, in a precise and operational form, the vague and universal ideas of regularity and symmetry. The notion of group led to a profound understanding of the character of the laws which govern natural phenomena, permitting to formulate new laws, correcting certain inadequate formulations and providing unitary and non contradictory formulations for the investigated phenomena." |
![]() ![]() You may like...
Networks in the Global World V…
Artem Antonyuk, Nikita Basov
Hardcover
R4,404
Discovery Miles 44 040
Advanced Database Technology and Design
Mario Piattini, Oscar Diaz
Hardcover
R2,334
Discovery Miles 23 340
SAS for Mixed Models - Introduction and…
Walter W. Stroup, George A. Milliken, …
Hardcover
R3,302
Discovery Miles 33 020
Programming for Computations - Python…
Svein Linge, Hans Petter Langtangen
Hardcover
R1,693
Discovery Miles 16 930
Talking To Strangers - What We Should…
Malcolm Gladwell
Paperback
![]()
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
|