![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang-Mills theory, are derived in detail using illustrative examples. Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide.
This second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. In all it is a virtually complete treatment of a vast array of central topics in algebraic number theory. New material is introduced here on duality theorems for unramified and tamely ramified extensions as well as a careful analysis of 2-extensions of real number fields.
In this book, non-spectral methods are presented and discussed that have been developed over the last two decades for the investigation of asymptotic behavior of operator semigroups. This concerns in particular Markov semigroups in L1-spaces, motivated by applications to probability theory and dynamical systems. Recently many results on the asymptotic behaviour of Markov semigroups were extended to positive semigroups in Banach lattices with order-continuous norm, and to positive semigroups in non-commutative L1-spaces. Related results, historical notes, exercises, and open problems accompany each chapter.
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
This collection of survey lectures in mathematics traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Technical University (ETH) at Zurich, as student, lecturer, professor, and professor emeritus.
This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d'enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d'Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept that would become its most distinctive feature: the program was not determined beforehand by the organizers, but during the meeting by all participants in an open discussion. This ensured that the talks would be on the latest developments in mathematics and that many important results were presented at the conference for the first time. Written by leading mathematicians, the papers in this volume cover various topics from algebraic geometry, topology, analysis, operator theory, and representation theory and display the breadth and depth of pure mathematics that has always been characteristic of the Arbeitstagung.
Only book on Hopf algebras aimed at advanced undergraduates
This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. The book has been designed as a supplement to the author's textbook Group Theory for Physicists, also published by World Scientific. Together these two books can be used in a course on group theory for first-year graduate students in physics, especially theoretical physics. They are also suitable for some graduate students in theoretical chemistry.
This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. The book has been designed as a supplement to the author's textbook Group Theory for Physicists, also published by World Scientific. Together these two books can be used in a course on group theory for first-year graduate students in physics, especially theoretical physics. They are also suitable for some graduate students in theoretical chemistry.
This edited volume presents a collection of carefully refereed articles covering the latest advances in Automorphic Forms and Number Theory, that were primarily developed from presentations given at the 2012 "International Conference on Automorphic Forms and Number Theory," held in Muscat, Sultanate of Oman. The present volume includes original research as well as some surveys and outlines of research altogether providing a contemporary snapshot on the latest activities in the field and covering the topics of: Borcherds products Congruences and Codes Jacobi forms Siegel and Hermitian modular forms Special values of L-series Recently, the Sultanate of Oman became a member of the International Mathematical Society. In view of this development, the conference provided the platform for scientific exchange and collaboration between scientists of different countries from all over the world. In particular, an opportunity was established for a close exchange between scientists and students of Germany, Oman, and Japan. The conference was hosted by the Sultan Qaboos University and the German University of Technology in Oman.
This book deals with the dynamics of general systems such as foliations, groups and pseudogroups, systems which are closely related via the notion of holonomy. It concentrates on notions and results related to different ways of measuring complexity of systems under consideration. More precisely, it deals with different types of growth, entropies and dimensions of limiting objects. Problems related to the topics covered are provided throughout the book.
This book constitutes the proceedings of the 2000 Howard conference on "Infinite Dimensional Lie Groups in Geometry and Representation Theory." It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
Commutative Algebra, Singularities and Computer Algebra presents current trends in commutative algebra, algebraic combinatorics, singularity theory and computer algebra, and highlights the interaction between these disciplines. Contributions by leading international mathematicians thoroughly discuss topics in: modules theory, integrally closed ideals and determinantal ideals, singularities in projective spaces and Castelnuovo-Mumford regularity, Groebner and SAGBI basis, and the use of the computer packages Bergman, CoCoA and SINGULAR.
The volume is introduced with a schedule of the conference sessions held in May 1998 in Moscow, and a vita of Kurosh (1908-1971), a forefather of modern algebra affiliated with Moscow State U. The names of the six sessions offer a sense of the diversity of participant interests: group theory; theory of rings and modules, homological algebra, and K-theory; Lie groups and Lie algebras, invariant theory, and algebraic groups; algebraic geometry, algebraic number theory, commutative algebra; algebraic systems; and computer algebra, and algorithmic problems. A sampling of the 32 titles by the international contributors includes: Strictly stratified algebras; Randomness: algebraic, statistical and complexity theory aspects; Codimension growth and graded identities; Birational correspondences of a double cone; Modular Lie algebras: new trends; and Some notes on universal algebraic geometry. Lacks an index.
This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p-groups play an important role. Topics covered in this volume include: subgroup structure of metacyclic p-groups Ishikawa's theorem on p-groups with two sizes of conjugate classes p-central p-groups theorem of Kegel on nilpotence of H p-groups partitions of p-groups characterizations of Dedekindian groups norm of p-groups p-groups with 2-uniserial subgroups of small order The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.
This monograph provides a comprehensive introduction to the Kazhdan-Lusztig theory of cells in the broader context of the unequal parameter case. Serving as a useful reference, the present volume offers a synthesis of significant advances made since Lusztig's seminal work on the subject was published in 2002. The focus lies on the combinatorics of the partition into cells for general Coxeter groups, with special attention given to induction methods, cellular maps and the role of Lusztig's conjectures. Using only algebraic and combinatorial methods, the author carefully develops proofs, discusses open conjectures, and presents recent research, including a chapter on the action of the cactus group. Kazhdan-Lusztig Cells with Unequal Parameters will appeal to graduate students and researchers interested in related subject areas, such as Lie theory, representation theory, and combinatorics of Coxeter groups. Useful examples and various exercises make this book suitable for self-study and use alongside lecture courses. Information for readers: The character {\mathbb{Z}} has been corrupted in the print edition of this book and appears incorrectly with a diagonal line running through the symbol.
This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world's leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schroedinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
Equivariant cohomology on smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Bruning and V.W. Guillemin. The point of departure are two relatively short but very remarkable papers be Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie." These papers are reproduced here, together with a modern introduction to the subject, written by two of the leading experts in the field. This "introduction" comes as a textbook of its own, though, presenting the first full treatment of equivariant cohomology in the de Rahm setting. The well known topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects, leading up to the localization theorems and other very recent results."
In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m, n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science. |
You may like...
Introduction to Political Psychology
Martha L. Cottam, Elena Mastors, …
Hardcover
R5,387
Discovery Miles 53 870
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Complexity and Randomness in Group…
Frederique Bassino, Ilya Kapovich, …
Hardcover
R4,540
Discovery Miles 45 400
|