![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This book was first published in 1970.
The aim of this text is to provide a concise treatment of some topics from group theory and representation theory for a one term course. It focuses on the non-commutative side of the field emphasizing the general linear group as the most important group and example. The book should enable graduate students from every mathematical field, as well as strong undergraduates with an interest in algebra, to solidify their knowledge of group theory. The reader should have a familiarity with groups, rings and fields, along with a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to expose the reader to additional topics.
This second volume deals with the relative homological algebra of complexes of modules and their applications. It is a concrete and easy introduction to the kind of homological algebra which has been developed in the last 50 years. The book serves as a bridge between the traditional texts on homological algebra and more advanced topics such as triangulated and derived categories or model category structures. It addresses to readers who have had a course in classical homological algebra, as well as to researchers.
This book is a study in economic geography, treated historically. Its primary purpose is to describe and explain the industrial geography of London since 1861, using the most recent statistics available for that purpose, noting that this work was originally published in 1962.
This proceedings volume, the fifth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 19th annual workshop, held online due to the COVID-19 pandemic. Organized every year since 2003 by the New York Number Theory Seminar at the CUNY Graduate Center, the workshops survey state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. The CANT 2021 meeting featured over a hundred speakers from North and South America, Europe, Asia, Australia, and New Zealand, and was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain peer-reviewed and edited papers on current topics in number theory. Topics featured in this volume include sumsets, minimal bases, Sidon sets, analytic and prime number theory, combinatorial and discrete geometry, numerical semigroups, and a survey of expansion, divisibility, and parity. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
This volume presents the core of invited expository lectures given at the 1993 NATO ASI held at the University of York. The subject matter of the ASI was the interplay between automata, semigroups, formal languages and groups. The invited talks were of an introductory nature but at a high level and many reached the cutting edge of research in the area. The lectures were given to a mixed group of students and specialists and were designed to be accessible to a broad audience. The papers were written in a similar spirit in the hope that their readership will be as wide as possible. With one exception they are all based on the talks which the lecturers gave at the meeting. The exception is caused by the fact that due to unanticipated progress the topic of John Rhodes' talk is now in such a state of flux that it has not been possible to produce a paper giving a clear picture of the situation. However, we do include an article by a member of the "Rhodes school" , namely Christopher Nehaniv, expanding on a contributed talk he gave. It generalizes the celebrated Krohn-Rhodes theorem for finite semigroups to all semigroups. For many years there has been a strong link between formal language theory and the theory of semigroups. Each subject continues to influence the other.
This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cech compactification G of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then G contains no nontrivial finite groups. Also the ideal structure of G is investigated. In particular, one shows that for every infinite Abelian group G, G contains 22|G| minimal right ideals. In the third part, using the semigroup G, almost maximal topological and left topological groups are constructed and their ultrafilter semigroups are examined. Projectives in the category of finite semigroups are characterized. Also one shows that every infinite Abelian group with finitely many elements of order 2 is absolutely -resolvable, and consequently, can be partitioned into subsets such that every coset modulo infinite subgroup meets each subset of the partition. The book concludes with a list of open problems in the field. Some familiarity with set theory, algebra and topology is presupposed. But in general, the book is almost self-contained. It is aimed at graduate students and researchers working in topological algebra and adjacent areas.
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods."
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
Introduction to Political Psychology explores the many psychological patterns that influence individual political behavior. The authors introduce readers to a broad range of theories, concepts, and case studies of political activity, arguing that individuals are driven or motivated to act in accordance with personality characteristics, values, beliefs, and attachments to groups. The book explains many aspects of political behavior-whether seemingly pathological actions or normal decision-making practices, which sometimes work optimally, and sometimes fail. Thoroughly updated throughout, the book examines patterns of political behavior in areas including leadership, group behavior, voting, race, nationalism, terrorism, and war. This edition features coverage of the 2016 election and profiles former U.S. President Donald Trump, while also including updated data on race relations and extremist groups in the United States. Global issues are also considered, with case studies focused on Myanmar and Syria, alongside coverage of social issues including Black Lives Matter and the #MeToo movement. Accessibly written and comprehensive in scope, it is an essential companion for all graduate and upper-level undergraduate students of psychology, political science, and political psychology. It will also be of interest to those in the policy-making community, especially those looking to learn more about the extent to which perceptions, personality, and group dynamics affect the policy-making arena. It is accompanied by a set of online instructor resources.
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.
It was already in 1964 Fis66] when B. Fischer raised the question: Which finite groups can be generated by a conjugacy class D of involutions, the product of any two of which has order 1, 2 or 37 Such a class D he called a class of 3-tmnspositions of G. This question is quite natural, since the class of transpositions of a symmetric group possesses this property. Namely the order of the product (ij)(kl) is 1, 2 or 3 according as {i, j} n {k, l} consists of 2,0 or 1 element. In fact, if I{i, j} n {k, I}1 = 1 and j = k, then (ij)(kl) is the 3-cycle (ijl). After the preliminary papers Fis66] and Fis64] he succeeded in Fis71J, Fis69] to classify all finite "nearly" simple groups generated by such a class of 3-transpositions, thereby discovering three new finite simple groups called M(22), M(23) and M(24). But even more important than his classification theorem was the fact that he originated a new method in the study of finite groups, which is called "internal geometric analysis" by D. Gorenstein in his book: Finite Simple Groups, an Introduction to their Classification. In fact D. Gorenstein writes that this method can be regarded as second in importance for the classification of finite simple groups only to the local group-theoretic analysis created by J. Thomp
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
This monograph presents both classical and recent results in the theory of nilpotent groups and provides a self-contained, comprehensive reference on the topic. While the theorems and proofs included can be found throughout the existing literature, this is the first book to collect them in a single volume. Details omitted from the original sources, along with additional computations and explanations, have been added to foster a stronger understanding of the theory of nilpotent groups and the techniques commonly used to study them. Topics discussed include collection processes, normal forms and embeddings, isolators, extraction of roots, P-localization, dimension subgroups and Lie algebras, decision problems, and nilpotent groups of automorphisms. Requiring only a strong undergraduate or beginning graduate background in algebra, graduate students and researchers in mathematics will find The Theory of Nilpotent Groups to be a valuable resource.
The aim of this book is the classification of symplectic amalgams - structures which are intimately related to the finite simple groups. In all there sixteen infinite families of symplectic amalgams together with 62 more exotic examples. The classification touches on many important aspects of modern group theory: * p-local analysis * the amalgam method * representation theory over finite fields; and * properties of the finite simple groups. The account is for the most part self-contained and the wealth of detail makes this book an excellent introduction to these recent developments for graduate students, as well as a valuable resource and reference for specialists in the area.
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the fourth volume (1985-1995) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this fourth volume is Kostant's commentaries and summaries of his papers in his own words.
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the fifth volume (1995-2005) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this fifth volume is Kostant's commentaries and summaries of his papers in his own words.
First published in German in 1970 and translated into Russian in 1973, this classic now becomes available in English. After introducing the theory of pro-p groups and their cohomology, it discusses presentations of the Galois groups G S of maximal p-extensions of number fields that are unramified outside a given set S of primes. It computes generators and relations as well as the cohomological dimension of some G S, and gives applications to infinite class field towers.The book demonstrates that the cohomology of groups is very useful for studying Galois theory of number fields; at the same time, it offers a down to earth introduction to the cohomological method. In a "Postscript" Helmut Koch and Franz Lemmermeyer give a survey on the development of the field in the last 30 years. Also, a list of additional, recent references has been included.
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the second volume (1965-1975) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this second volume is Kostant's commentaries and summaries of his papers in his own words.
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups."
Insecurity is an inevitable part of being human. Although life is insecure for every organism, humans alone are burdened by knowing that this is so. This ground-breaking volume features contributions by leading international researchers exploring the social psychology of insecurity, and how existential, metaphysical and social uncertainty influence human social behaviour. Chapters in the book investigate the psychological origins of insecurity, evolutionary theorizing about the functions of insecurity, the motivational strategies people adopt to manage insecurity, self-regulation strategies, the role of insecurity in the formation and maintenance of social relationships, and the influence of insecurity and uncertainty on the organization of larger social systems and public affairs. The chapters also discuss how insecurity influences many areas of contemporary social life, highlighting the applied implications of this line of research. Topics covered include the role of insecurity in social communication, social judgments, decision making, group identification, morality, interpersonal behaviour, relationships, attitudes and many applied aspects of social life and politics where understanding the psychology of insecurity is of critical importance. This accessible and engaging book will be of interest to students, researchers and practitioners as a textbook or reference book in behavioral and social science fields, as well as to a broad spectrum of intelligent lay audience seeking to understand one of the most intriguing issues that shapes human social life.
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups. |
![]() ![]() You may like...
Artificial Intelligence Applications and…
Ilias Maglogiannis, Lazaros Iliadis, …
Hardcover
R1,544
Discovery Miles 15 440
The Chemical Dialogue Between Plants and…
Vivek Sharma, Richa Salwan, …
Paperback
R4,189
Discovery Miles 41 890
Data Science in Cybersecurity and…
Leslie F Sikos, Kim-Kwang Raymond Choo
Hardcover
R5,262
Discovery Miles 52 620
Empowered Leaders - A Social Justice…
Bryan Kirby, Jessica Stargardter
Paperback
R1,008
Discovery Miles 10 080
An Introduction to Modern Analysis
Vicente Montesinos, Peter Zizler, …
Hardcover
R3,316
Discovery Miles 33 160
Policy and Practice in Science Education…
Manabu Sumida, Keith Taber
Hardcover
R4,479
Discovery Miles 44 790
The Pharmaceutical Regulatory Process
Ira R. Berry, Robert P. Martin
Hardcover
R5,891
Discovery Miles 58 910
|