![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
This text is about the geometric theory of discrete groups and the associated tesselations of the underlying space. The theory of Möbius transformations in n-dimensional Euclidean space is developed. These transformations are discussed as isometries of hyperbolic space and are then identified with the elementary transformations of complex analysis. A detailed account of analytic hyperbolic trigonometry is given, and this forms the basis of the subsequent analysis of tesselations of the hyperbolic plane. Emphasis is placed on the geometrical aspects of the subject and on the universal constraints which must be satisfied by all tesselations.
I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics."
This is the fifth volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume include theory of linear algebras and Lie algebras. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world. Michio Kuga s lectures on Group Theory and Differential Equations are a realization of two dreams---one to see Galois groups used to attack the problems of differential equations---the other to do so in such a manner as to take students from a very basic level to an understanding of the heart of this fascinating mathematical problem. English reading students now have the opportunity to enjoy this lively presentation, from elementary ideas to cartoons to funny examples, and to follow the mind of an imaginative and creative mathematician into a world of enduring mathematical creations."
Special relativity and quantum mechanics are likely to remain the two most important languages in physics for many years to come. The underlying language for both disciplines is group theory. Eugene P. Wigner's 1939 paper on the Unitary Representations of the Inhomogeneous Lorentz Group laid the foundation for unifying the concepts and algorithms of quantum mechanics and special relativity. In view of the strong current interest in the space-time symmetries of elementary particles, it is safe to say that Wigner's 1939 paper was fifty years ahead of its time. This edited volume consists of Wigner's 1939 paper and the major papers on the Lorentz group published since 1939. . This volume is intended for graduate and advanced undergraduate students in physics and mathematics, as well as mature physicists wishing to understand the more fundamental aspects of physics than are available from the fashion-oriented theoretical models which come and go. The original papers contained in this volume are useful as supplementary reading material for students in courses on group theory, relativistic quantum mechanics and quantum field theory, relativistic electrodynamics, general relativity, and elementary particle physics. This reprint collection is an extension of the textbook by the present editors entitled "Theory and Applications of the Poincare Group." Since this book is largely based on the articles contained herein, the present volume should be viewed as a reading for the previous work. continuation of and supplementary We would like to thank Professors J. Bjorken, R. Feynman, R. Hofstadter, J.
The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to the questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to topological Galois theory developed by the author. All results are presented in the same elementary and self-contained manner as classical Galois theory. Due to this feature, the book will be useful and interesting to readers with very different background in mathematics, from undergraduate students to researchers.
This edited collection covers the role of the process observer - a position that enhances the effectiveness of group functioning by observing the process, summarizing the behavior of the group so that the group can learn and, if needed, improve its functioning. There is little guidance on best practices for this role, and in most settings, process observers are forced to rely on whatever previous training they have received in group work to fulfil their role. The first of its kind, this book offers a wealth of resources for the role of group process observer organized in a systematic way. Each contributor focuses on a specific aspect of group process observation, identifying what is currently known on the topic, suggesting best practices, and providing the reader with tools, structures, and guidelines for effective process observation. Students and educators of group work courses will find this book integral as it covers the existing gap in literature on group process observation.
The 20 sporadics involved in the Monster, the largest sporadic group, constitute the Happy Family. This book is a leisurely and rigorous study of two of their three generations. The level is suitable for graduate students with little background in general finite group theory, established mathematicians and mathematical physicists.
These books grew out of the perception that a number of important conceptual and theoretical advances in research on small group behavior had developed in recent years, but were scattered in rather fragmentary fashion across a diverse literature. Thus, it seemed useful to encourage the formulation of summary accounts. A conference was held in Hamburg with the aim of not only encouraging such developments, but also encouraging the integration of theoretical approaches where possible. These two volumes are the result. Current research on small groups falls roughly into two moderately broad categories, and this classification is reflected in the two books. Volume I addresses theoretical problems associated with the consensual action of task-oriented small groups, whereas Volume II focuses on interpersonal relations and social processes within such groups. The two volumes differ somewhat in that the conceptual work of Volume I tends to address rather strictly defined problems of consensual action, some approaches tending to the axiomatic, whereas the conceptual work described in Volume II is generally less formal and rather general in focus. However, both volumes represent current conceptual work in small group research and can claim to have achieved the original purpose of up-to-date conceptual summaries of progress on new theoretical work.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Chapter 1 introduces some of the terminology and notation used later and indicates prerequisites. Chapter 2 gives a reasonably thorough account of all finite subgroups of the orthogonal groups in two and three dimensions. The presentation is somewhat less formal than in succeeding chapters. For instance, the existence of the icosahedron is accepted as an empirical fact, and no formal proof of existence is included. Throughout most of Chapter 2 we do not distinguish between groups that are "geo metrically indistinguishable," that is, conjugate in the orthogonal group. Very little of the material in Chapter 2 is actually required for the sub sequent chapters, but it serves two important purposes: It aids in the development of geometrical insight, and it serves as a source of illustrative examples. There is a discussion offundamental regions in Chapter 3. Chapter 4 provides a correspondence between fundamental reflections and funda mental regions via a discussion of root systems. The actual classification and construction of finite reflection groups takes place in Chapter 5. where we have in part followed the methods of E. Witt and B. L. van der Waerden. Generators and relations for finite reflection groups are discussed in Chapter 6. There are historical remarks and suggestions for further reading in a Post lude."
Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge-Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly pi-regular.Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics, and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings, and algebraic combinatorics merged under the umbrella of algebraic monoids.
Symmetry is a key ingredient in many mathematical, physical, and biological theories. Using representation theory and invariant theory to analyze the symmetries that arise from group actions, and with strong emphasis on the geometry and basic theory of Lie groups and Lie algebras, Symmetry, Representations, and Invariants is a significant reworking of an earlier highly-acclaimed work by the authors. The result is a comprehensive introduction to Lie theory, representation theory, invariant theory, and algebraic groups, in a new presentation that is more accessible to students and includes a broader range of applications. The philosophy of the earlier book is retained, i.e., presenting the principal theorems of representation theory for the classical matrix groups as motivation for the general theory of reductive groups. The wealth of examples and discussion prepares the reader for the complete arguments now given in the general case. Key Features of Symmetry, Representations, and Invariants (1) Early chapters suitable for honors undergraduate or beginning graduate courses, requiring only linear algebra, basic abstract algebra, and advanced calculus; (2) Applications to geometry (curvature tensors), topology (Jones polynomial via symmetry), and combinatorics (symmetric group and Young tableaux); (3) Self-contained chapters, appendices, comprehensive bibliography; (4) More than 350 exercises (most with detailed hints for solutions) further explore main concepts; (5) Serves as an excellent main text for a one-year course in Lie group theory; (6) Benefits physicists as well as mathematicians as a reference work.
This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. The book has been designed as a supplement to the author's textbook Group Theory for Physicists, also published by World Scientific. Together these two books can be used in a course on group theory for first-year graduate students in physics, especially theoretical physics. They are also suitable for some graduate students in theoretical chemistry.
The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras (including semisimple, solvable, and of general type). In particular, a modern approach to the description of automorphisms and gradings of semisimple Lie algebras is given. A special chapter is devoted to models of the exceptional Lie algebras. The book contains many tables and will serve as a reference. At the same time many results are accompanied by short proofs. Onishchik and Vinberg are internationally known specialists in their field and well-known for their monograph "Lie Groups and Algebraic Groups" (Springer-Verlag 1990). This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
A 30-article volume, introducing an active and attractive part of algebra that has gained much from its position at the crossroads of mathematics over the years. The papers stimulate the reader to consider and actively investigate the topics and problems they contain.
Introduction to Political Psychology explores the many psychological patterns that influence individual political behavior. The authors introduce readers to a broad range of theories, concepts, and case studies of political activity, arguing that individuals are driven or motivated to act in accordance with personality characteristics, values, beliefs, and attachments to groups. The book explains many aspects of political behavior-whether seemingly pathological actions or normal decision-making practices, which sometimes work optimally, and sometimes fail. Thoroughly updated throughout, the book examines patterns of political behavior in areas including leadership, group behavior, voting, race, nationalism, terrorism, and war. This edition features coverage of the 2016 election and profiles former U.S. President Donald Trump, while also including updated data on race relations and extremist groups in the United States. Global issues are also considered, with case studies focused on Myanmar and Syria, alongside coverage of social issues including Black Lives Matter and the #MeToo movement. Accessibly written and comprehensive in scope, it is an essential companion for all graduate and upper-level undergraduate students of psychology, political science, and political psychology. It will also be of interest to those in the policy-making community, especially those looking to learn more about the extent to which perceptions, personality, and group dynamics affect the policy-making arena. It is accompanied by a set of online instructor resources.
The first book on commutative semigroups was Redei's The theory of .finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the stan- dard examples ofsemigroups, which consist ofvarious kinds oftransformations or arise from finite automata, and are usually quite noncommutative. Commutative of factoriza- semigroups provide a natural setting and a useful tool for the study tion in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semi groups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part oftoday's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002].
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
The purpose of this monograph is to provide a theory of Markov processes that are invariant under the actions of Lie groups, focusing on ways to represent such processes in the spirit of the classical Levy-Khinchin representation. It interweaves probability theory, topology, and global analysis on manifolds to present the most recent results in a developing area of stochastic analysis. The author's discussion is structured with three different levels of generality:- A Markov process in a Lie group G that is invariant under the left (or right) translations- A Markov process xt in a manifold X that is invariant under the transitive action of a Lie group G on X- A Markov process xt invariant under the non-transitive action of a Lie group GA large portion of the text is devoted to the representation of inhomogeneous Levy processes in Lie groups and homogeneous spaces by a time dependent triple through a martingale property. Preliminary definitions and results in both stochastics and Lie groups are provided in a series of appendices, making the book accessible to those who may be non-specialists in either of these areas. Invariant Markov Processes Under Lie Group Actions will be of interest to researchers in stochastic analysis and probability theory, and will also appeal to experts in Lie groups, differential geometry, and related topics interested in applications of their own subjects. |
![]() ![]() You may like...
Discovering Computers 2018 - Digital…
Misty Vermaat, Steven Freund, …
Paperback
Iterative Learning Stabilization and…
Limin Wang, Ridong Zhang, …
Hardcover
R2,916
Discovery Miles 29 160
Reuse Methodology Manual for…
Michael Keating, Pierre Bricaud
Hardcover
R2,602
Discovery Miles 26 020
|