![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > Groups & group theory
"Presents the proceedings of the recently held Third International Conference on Commutative Ring Theory in Fez, Morocco. Details the latest developments in commutative algebra and related areas-featuring 26 original research articles and six survey articles on fundamental topics of current interest. Examines wide-ranging developments in commutative algebra, together with connections to algebraic number theory and algebraic geometry."
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Spatializing Social Media charts the theoretical and methodological challenges in analyzing and visualizing social media data mapped to geographic areas. It introduces the reader to concepts, theories, and methods that sit at the crossroads between spatial and social network analysis to unpack the conceptual differences between online and face-to-face social networks and the nonlinear effects triggered by social activity that overlaps online and offline. The book is divided into four sections, with the first accounting for the differences between space (the geometrical arrangements that structure and enable forms of interaction) and place (the mechanisms through which social meanings are attached to physical locations). The second section covers the rationale of social network analysis and the ontological differences, stating that relationships, more than individual and independent attributes, are key to understanding of social behavior. The third section covers a range of case studies that successfully mapped social media activity to geographically situated areas and considers the inflection of homophilous dependencies across online and offline social networks. The fourth and last section of the book explores a range of networks and discusses methods for and approaches to plotting a social network graph onto a map, including the purpose-built R package Spatial Social Media. The book takes a non-mathematical approach to social networks and spatial statistics suitable for postgraduate students in sociology, psychology and the social sciences.
The study of finite groups factorised as a product of two or more subgroups has become a subject of great interest during the last years with applications not only in group theory, but also in other areas like cryptography and coding theory. It has experienced a big impulse with the introduction of some permutability conditions. The aim of this book is to gather, order, and examine part of this material, including the latest advances made, give some new approach to some topics, and present some new subjects of research in the theory of finite factorised groups. Some of the topics covered by this book include groups whose subnormal subgroups are normal, permutable, or Sylow-permutable, products of nilpotent groups, and an exhaustive structural study of totally and mutually permutable products of finite groups and their relation with classes of groups. This monograph is mainly addressed to graduate students and senior researchers interested in the study of products and permutability of finite groups. A background in finite group theory and a basic knowledge of representation theory and classes of groups is recommended to follow it.
This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms.
These notes, already well known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers including the basic classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and representation theory. The theory is illustrated by using the example of sln; in particular, the representation theory of sl2 is completely worked out. The last chapter discusses the connection between Lie algebras and Lie groups, and is intended to guide the reader towards further study.
What do the classification of algebraic surfaces, Weyl's dimension formula and maximal orders in central simple algebras have in common? All are related to a type of manifold called locally mixed symmetric spaces in this book. The presentation emphasizes geometric concepts and relations and gives each reader the "roter Faden", starting from the basics and proceeding towards quite advanced topics which lie at the intersection of differential and algebraic geometry, algebra and topology. Avoiding technicalities and assuming only a working knowledge of real Lie groups, the text provides a wealth of examples of symmetric spaces. The last two chapters deal with one particular case (Kuga fiber spaces) and a generalization (elliptic surfaces), both of which require some knowledge of algebraic geometry. Of interest to topologists, differential or algebraic geometers working in areas related to arithmetic groups, the book also offers an introduction to the ideas for non-experts.
This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.
This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure-the Schrodinger-Virasoro algebra. Just as Poincare invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrodinger operators."
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.
These books grew out of the perception that a number of important
conceptual and theoretical advances in research on small group
behavior had developed in recent years, but were scattered in
rather fragmentary fashion across a diverse literature. Thus, it
seemed useful to encourage the formulation of summary accounts. A
conference was held in Hamburg with the aim of not only encouraging
such developments, but also encouraging the integration of
theoretical approaches where possible. These two volumes are the
result.
This book brings together the impact of Prof. John Horton Conway, the playful and legendary mathematician's wide range of contributions in science which includes research areas-Game of Life in cellular automata, theory of finite groups, knot theory, number theory, combinatorial game theory, and coding theory. It contains transcripts where some eminent scientists have shared their first-hand experience of interacting with Conway, as well as some invited research articles from the experts focusing on Game of Life, cellular automata, and the diverse research directions that started with Conway's Game of Life. The book paints a portrait of Conway's research life and philosophical direction in mathematics and is of interest to whoever wants to explore his contribution to the history and philosophy of mathematics and computer science. It is designed as a small tribute to Prof. Conway whom we lost on April 11, 2020.
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p-1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
Richly illustrated in attractive full-colour and contains pedagogical features such as essay questions, summary and key points, and further reading suggestions is supported by a fully updated companion website, featuring student resources including lecture recordings, multiple choice questions and useful web links, as well as PowerPoint slides for lecturers. The only dedicated textbook on social neuroscience providing a much needed resource for lecturers and students. Suitable for both undergraduate and postgraduate students in psychology and neuroscience from 2nd year to masters level. Relevant courses include social neuroscience, social cognitive neuroscience, the social mind, social cognition, human neuroscience, developmental social neuroscience, etc. The third edition will be updated to reflect the growing volume of evidence and theories in the field and will include additional content on the applications of social neuroscience, social influence, reproducibility issues, and computational approaches. The companion website will include a new test bank.
The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Some mathematical disciplines can be presented and developed in the context of other disciplines, for instance Boolean algebras, that Stone has converted in a branch of ring theory, projective geome- tries, characterized by Birkhoff as lattices of a special type, projec- tive, descriptive and spherical geometries, represented by Prenowitz, as multigroups, linear geometries and convex sets presented by Jan- tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak did for geometries, in this book we present and study several ma- thematical disciplines that use the Hyperstructure Theory. Since the beginning, the Hyperstructure Theory and particu- larly the Hypergroup Theory, had applications to several domains. Marty, who introduced hypergroups in 1934, applied them to groups, algebraic functions and rational fractions. New applications to groups were also found among others by Eaton, Ore, Krasner, Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad. Connections with other subjects of classical pure Mathematics have been determined and studied: * Fields by Krasner, Stratigopoulos and Massouros Ch. * Lattices by Mittas, Comer, Konstantinidou, Serafimidis, Leoreanu and Calugareanu * Rings by Nakano, Kemprasit, Yuwaree * Quasigroups and Groupoids by Koskas, Corsini, Kepka, Drbohlav, Nemec * Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra- sit, Punkla, Leoreanu * Ordered Structures by Prenowitz, Corsini, Chvalina IX x * Combinatorics by Comer, Tallini, Migliorato, De Salvo, Scafati, Gionfriddo, Scorzoni * Vector Spaces by Mittas * Topology by Mittas , Konstantinidou * Ternary Algebras by Bandelt and Hedlikova.
This book collects important results concerning the classification and properties of nilpotent orbits in a Lie algebra. It develops the Dynkin-Kostant and Bala-Carter classifications of complex nilpotent orbits and derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits.
This modern translation of Sophus Lie's and Friedrich Engel's "Theorie der Transformationsgruppen I" will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
First Published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.
Proceedings of the Second International Conference on Trends in Semigroup Theory and Evolution Equations held Sept. 1989, Delft University of Technology, the Netherlands. Papers deal with recent developments in semigroup theory (e.g., positive, dual, integrated), and nonlinear evolution equations (e
This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.
For years I have heard about buildings and their applications to group theory. I finally decided to try to learn something about the subject by teaching a graduate course on it at Cornell University in Spring 1987. This book is based on the not es from that course. The course started from scratch and proceeded at a leisurely pace. The book therefore does not get very far. Indeed, the definition of the term "building" doesn't even appear until Chapter IV. My hope, however, is that the book gets far enough to enable the reader to tadle the literat ure on buildings, some of which can seem very forbidding. Most of the results in this book are due to J. Tits, who originated the the ory of buildings. The main exceptions are Chapter I (which presents some classical material), Chapter VI (which prcsents joint work of F. Bruhat and Tits), and Chapter VII (which surveys some applications, due to var ious people). It has been a pleasure studying Tits's work; I only hope my exposition does it justice."
Groups are arguably an essential and unavoidable part of our human lives-whether we are part of families, work teams, therapy groups, organizational systems, social clubs, or larger communities. In Groups in Transactional Analysis, Object Relations, and Family Systems: Studying Ourselves in Collective Life, N. Michel Landaiche, III addresses the intense feelings and unexamined beliefs that exist in relation to groups, and explores how to enhance learning, development and growth within them. Landaiche's multidisciplinary perspective is grounded in the traditions of Eric Berne's transactional analysis, Wilfred Bion's group-as-a-whole model, and Murray Bowen's family systems theory. The book presents a practice of studying ourselves in collective life that utilizes a naturalistic method of observation, analysis of experiential data, and hypothesis formation, all of which are subject to further revision as we gather more data from our lived experiences. Drawing from his extensive professional experience of group work in a range of contexts, Landaiche deftly explores topics including group culture, social pain, learning and language, and presents key principles which enhance and facilitate learning in groups. With a style that is both deeply personal and theoretically grounded in a diverse range of studies, Groups in Transactional Analysis, Object Relations, and Family Systems presents a contemporary assessment of how we operate collectively, and how modern life has changed our outlook. It will be essential reading for transactional analysts in practice and in training, as well as other professionals working with groups. It will also be of value to academics and students of psychology, psychotherapy, and group dynamics, and anyone seeking to understand their role within a group. See the below link to an interview about the book with Tess Elliott: https://vimeo.com/510266467
Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.
This volume contains contributions by the participants of the conference "Groups and Computation," which took place at The Ohio State University in Columbus, Ohio, in June 1999. This conference was the successor of two workshops on "Groups and Computation" held at DIMACS in 1991 and 1995. There are papers on permutation group algorithms, finitely presented groups, polycyclic groups, and parallel computation, providing a representative sample of the breadth of Computational Group Theory. On the other hand, more than one third of the papers deal with computations in matrix groups, giving an in-depth treatment of the currently most active area of the field. The points of view of the papers range from explicit computations to group-theoretic algorithms to group-theoretic theorems needed for algorithm development. |
![]() ![]() You may like...
3rd International Winter School and…
Erez Shmueli, Baruch Barzel, …
Hardcover
Bridging the Time Scales - Molecular…
Peter Nielaba, Michel Mareschal, …
Hardcover
R2,991
Discovery Miles 29 910
Promises in the Promised Land - Mobility…
Vered Kraus, Robert W. Hodge
Hardcover
R2,771
Discovery Miles 27 710
Top Notch Level 2 Student's Book & eBook…
Joan Saslow, Allen Ascher
Digital product license key
R1,646
Discovery Miles 16 460
Fractional-Order Design - Devices…
Ahmed G Radwan, Farooq Ahmad Khanday, …
Paperback
R4,253
Discovery Miles 42 530
Railway Transportation in South Asia…
Saptarshi Mitra, Sumana, Bandyopadhyay, …
Hardcover
R4,595
Discovery Miles 45 950
|