|
Books > Science & Mathematics > Mathematics > History of mathematics
Il libro A] la naturale continuazione di 'Introduzione alla
complessitA computazionale'. Il libro inizia affrontando il
problema della primalitA e della difficile identificazione della
sua precisa complessitA computazionale, per portarci all'analisi
delle relazioni tra determinismo e casualitA . Vengono poi
presentati modelli di calcolo. Essempi ed esercizi aiutano il
lettore ad impadronirsi degli strumenti matematici che vengono
introdotti. Il testo puA essere utilizzato per corsi universitari
avanzati (in particolare del corso di laurea in Informatica) e per
corsi di dottorato. Inoltre si propone come riferimento per i
ricercatori del settore e di aree affini.
Quantum physicist Etienne Klein and astrophysicist Marc Lachieze-Rey present and comment on the successive unifications that have marked the fundamental advances in physics. A good deal of modern theoretical physics is lightly and gracefully explained, rooted in a philosophical examination of the motivations that drive physicists and physics. The book is a discourse on the nature of elegance and beauty in physics, seeking to explain how and why beauty is a reliable guide in the ongoing search for Truth in physics.
From a review of the second edition:
"This book covers many interesting topics not usually covered in
a present day undergraduate course, as well as certain basic topics
such as the development of the calculus and the solution of
polynomial equations. The fact that the topics are introduced in
their historical contexts will enable students to better appreciate
and understand the mathematical ideas involved...If one constructs
a list of topics central to a history course, then they would
closely resemble those chosen here."
(David Parrott, Australian Mathematical Society)
This book offers a collection of historical essays detailing a
large variety of mathematical disciplines and issues; it 's
accessible to a broad audience. This third edition includes new
chapters on simple groups and new sections on alternating groups
and the Poincare conjecture. Many more exercises have been added as
well as commentary that helps place the exercises in context.
Social revolutions--critical periods of decisive, qualitative
change--are a commonly acknowledged historical fact. The
publication of Kuhn's The Structure of Scientific Revolutions in
1962 led to an exciting discussion of revolutions in the natural
sciences; an off-shoot of this was a debate in the United States in
the mid-1970's as to whether the concept of revolution could be
applied to mathematics as well as science. This book is the first
comprehensive examination of the question. It reprints the original
papers of leading supporters and opponents, together with
additional chapters giving their current views. To this are added
new contributions from nine other experts in the history of
mathematics, who each discuss an important episode and consider
whether it was a revolution. The whole question of mathematical
revolutions is thus examined comprehensively and from a variety of
perspectives, and will interest mathematicians, philosophers, and
historians alike.
Fur 1994 wurde Zurich die Durchfuhrung des Internationalen
Mathematiker Kongresses anvertraut. Zurich ist damit der bisher
einzige Ort, an dem diese Veranstaltung nach 1897 und 1932 bereits
zum dritten Mal stattfinden kann. Dies ist kaum zufallig, denn das
Fachgebiet Mathematik in Zurich war seit der Grundung der
Universitat und der Eidgenoessischen Technischen Hochschule um die
Mitte des 19. Jahrhunderts immer durch bedeutende Persoenlichkeiten
vertreten. Das vorliegende Buch gibt einen UEberblick uber die
Entwicklung der Mathematik an den beiden Zurcher Hochschulen bis in
die sechziger Jahre dieses Jahrhunderts hinein, wobei die
personellen Aspekte im Vordergrund stehen. Der Text wird von vielen
Abbildungen, darunter Portrats der meisten Mathematiker, die in
Zurich tatig gewesen sind, illustriert.
Die allgemeine Relativitastheorie lasst sich nur mit Hilfe des
Tensorkalkuls formulieren. Diesen lernte Einstein 1912 in Form des
absoluten Differentialkalkuls kennen. Dessen Schopfer war Gregorio
Ricci, dem zusammen mit Sophus Lie und anderen der Ausbau der
Theorie der Differentialinvarianten gelang. Der absolute
Differentialkalkul passte zur allgemeinen Relativitatstheorie wie
ein Schlussel zum Schloss: der in den Jahren 1884-92 von Ricci
entwickelte Kalkul erfullte in der Tat genau das physikalische
Konzept der allgemeinen Relativitatstheorie, das Einstein 1907-15
ausarbeitete. Ein derartiges Zusammenpassen war nur dadurch
moglich, weil sowohl Ricci innerhalb der Mathematik als auch
Einstein innerhalb der Physik vergleichbare Fragen stellten,
namlich Fragen nach Invarianten bei speziellen Transformationen. Es
wird versucht, den historischen Weg so genau wie moglich anhand der
Quellen nachzuzeichnen. Neu ist die Herausarbeitung des
invariantentheoretischen Aspekts, dem gegenuber die Bedeutung der
Differentialgeometrie fur die Entwicklung des Tensorkalkuls in den
Hintergrund treten muss."
This book gives a remarkably fine account of the influences mathematics has exerted on the development of philosophy, the physical sciences, religion, and the arts in Western life.
|
|