![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > History of mathematics
Since its publication, C.F. Gauss's Disquisitiones Arithmeticae (1801) has acquired an almost mythical reputation, standing as an ideal of exposition in notation, problems and methods; as a model of organisation and theory building; and as a source of mathematical inspiration. Eighteen authors - mathematicians, historians, philosophers - have collaborated in this volume to assess the impact of the Disquisitiones, in the two centuries since its publication.
When Gottfried Wilhelm Leibniz first arrived in Paris in 1672 he was a well-educated, sophisticated young diplomat who had yet to show any real sign of his latent mathematical abilities. Over his next four crowded, formative years, which Professor Hofmann analyses in detail, he grew to be one of the outstanding mathematicians of the age and to found the modern differential calculus. In Paris, Leibniz rapidly absorbed the advanced exact science of the day. During a short visit to London in 1673 he made a fruitful contact with Henry Oldenburg, the secretary of the Royal Society, who provided him with a wide miscellany of information regarding current British scientific activities. Returning to Paris, Leibniz achieved his own first creative discoveries, developing a method of integral transmutation' through which lie derived the 'arithmetical' quadrature of the circle by an infinite series. He also explored the theory of algebraic equations. Later, by codifying existing tangent and quadrature methods and expressing their algorithmic structure in a universal' notation, lie laid the foundation of formal 'Leibnizian' calculus.
Based on extensive research in Sanskrit sources, "Mathematics in India" chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic scientific traditions. Plofker shows that Indian mathematics appears not as a disconnected set of discoveries, but as a lively, diverse, yet strongly unified discipline, intimately linked to other Indian forms of learning. Far more than in other areas of the history of mathematics, the literature on Indian mathematics reveals huge discrepancies between what researchers generally agree on and what general readers pick up from popular ideas. This book explains with candor the chief controversies causing these discrepancies--both the flaws in many popular claims, and the uncertainties underlying many scholarly conclusions. Supplementing the main narrative are biographical resources for dozens of Indian mathematicians; a guide to key features of Sanskrit for the non-Indologist; and illustrations of manuscripts, inscriptions, and artifacts. "Mathematics in India" provides a rich and complex understanding of the Indian mathematical tradition. **Author's note: The concept of "computational positivism" in Indian mathematical science, mentioned on p. 120, is due to Prof. Roddam Narasimha and is explored in more detail in some of his works, including "The Indian half of Needham's question: some thoughts on axioms, models, algorithms, and computational positivism" ("Interdisciplinary Science Reviews" 28, 2003, 1-13).
The classic Heath translation, in a completely new layout with plenty of space and generous margins. An affordable but sturdy student and teacher sewn softcover edition in one volume, with minimal notes and a new index/glossary.
The main part of the third volume of Dr Whiteside's annotated and critical edition of all the known mathematical papers of Isaac Newton reproduces, from the original autograph, Newton's elaborate tract on infinite series and fluxions (the so-called Methodus Fluxionum), including a formerly unpublished appendix on geometrical fluxions. Ancillary documents include, in Part 1, papers on the integration of algebraic functions and, in Part 2, short texts dealing with geometry and simple harmonic motion in a cycloidal arc. Part 3 reproduces, from both manuscript versions of Newton's Lectiones Opticae and from his Waste Book, mathematical excerpts from his researches into light and the theory of lenses at this period. An appendix summarizes mathematical highlights in his contemporary correspondence.
The fifth volume of this definitive edition centres around Newton's Lucasian lectures on algebra, purportedly delivered during 1673-83, and subsequently prepared for publication under the title Arithmetica Universalis many years later. Dr Whiteside first reproduces the text of the lectures deposited by Newton in the Cambridge University Library about 1684. In these much reworked, not quite finished, professional lectiones, Newton builds upon his earlier studies of the fundamentals of algebra and its application to the theory and construction of equations, developing new techniques for the factorizing of algebraic quantities and the delimitation of bounds to the number and location of roots, with a wealth of worked arithmetical, geometrical, mechanical and astronomical problems. An historical introduction traces what is known of the background to the parent manuscript and assesses the subsequent impact of the edition prepared by Whiston about 1705 and the revised version published by Newton himself in 1722. A number of minor worksheets, preliminary drafts and later augmentations buttress this primary text, throwing light upon its development and the essential untrustworthiness of its imposed marginal chronology.
The second volume of Dr Whiteside's annotated edition of all the known mathematical papers of Isaac Newton covers the period 1667-70. It is divided into three parts: Part 1 contains the first drafts of an attempted classification of cubics, together with more general studies on the properties of higher algebraic curves and researches into the 'organic' construction of curves. Part 2 comprises papers on miscellaneous researches in calculus, including the important De Analysi which introduced Newton to John Collins and others outside Cambridge; Newton's original text is here accompanied by Leibniz's excerpts and review, and by Newton's counter review. Part 3 contains Mercator's Latin translation of Kinckhuysen's introduction to algebra, with Newton's corrections and 'observations' upon it, and an account of researches into algebraic equations and their geometrical construction.
The transformation of mathematics from ancient Greece to the medieval Arab-speaking world is here approached by focusing on a single problem proposed by Archimedes and the many solutions offered. In this trajectory Reviel Netz follows the change in the task from solving a geometrical problem to its expression as an equation, still formulated geometrically, and then on to an algebraic problem, now handled by procedures that are more like rules of manipulation. From a practice of mathematics based on the localized solution (and grounded in the polemical practices of early Greek science) we see a transition to a practice of mathematics based on the systematic approach (and grounded in the deuteronomic practices of Late Antiquity and the Middle Ages). With three chapters ranging chronologically from Hellenistic mathematics, through late Antiquity, to the medieval world, Reviel Netz offers an alternate interpretation of the historical journey of pre-modern mathematics.
Marking 94 years since its first appearance, this book provides an annotated translation of Sainte-Lague's seminal monograph Les reseaux (ou graphes), drawing attention to its fundamental principles and ideas. Sainte-Lague's 1926 monograph appeared only in French, but in the 1990s H. Gropp published a number of English papers describing several aspects of the book. He expressed his hope that an English translation might sometime be available to the mathematics community. In the 10 years following the appearance of Les reseaux (ou graphes), the development of graph theory continued, culminating in the publication of the first full book on the theory of finite and infinite graphs in 1936 by Denes Koenig. This remained the only well-known text until Claude Berge's 1958 book on the theory and applications of graphs. By 1960, graph theory had emerged as a significant mathematical discipline of its own. This book will be of interest to graph theorists and mathematical historians.
When Newton left Cambridge in April 1696 to take up, at the age of 53, a new career at the London Mint, he did not entirely 'leave off Mathematicks' as he so often publicly declared. This last volume of his mathematical papers presents the extant record of the investigations which for one reason and another he pursued during the last quarter of his life. In January 1697 Newton was tempted to respond to two challenges issued by Johann Bernoulli to the international community of mathematicians, one the celebrated problem of identifying the brachistochrone; both he resolved within the space of an evening, producing an elegant construction of the cycloid which he identified to be the curve of fall in least time. In the autumn of 1703, the appearance of work on 'inverse fluxions' by George Cheyne similarly provoked him to prepare his own ten-year-old treatise De Quadratura Curvarum for publication, and more importantly to write a long introduction to it where he set down what became his best-known statement of the nature and purpose of his fluxional calculus.
This volume reproduces mathematically significant extracts from the extant manuscript record of Newton's researches during 1684-5 into the dynamical motion of bodies under the deviating action of a central force, and his subsequent struggles thereby to explain the observed motions of solar comets and of the moon. The short tract De motu Corporum, which Newton initially composed on this topic in the early autumn of 1684, was primarily built around his earlier proof that in the absence of external perturbation a planetary eclipse may be traversed under an inverse-square force pull to its solar focus, but also discussed the simplest case of resisted ballistic motion. In epilogue, excerpts from his abandoned grand scheme for revising the Principia in the early 1690s detail Newton's planned refinements to his printed exposition of central force, both simplifying and extending it, introducing therein a novel general fluxional measure of such force - but failing adequately to apply it to the primary case of conic motion.
The bringing together, in an annotated and critical edition, of all the known mathematical papers of Isaac Newton marks a step forward in the publication of the works of this great natural philosopher. In all, there are eight volumes in this present edition. Translations of papers in Latin face the original text and notes are printed on the page-openings to which they refer, so far as possible. Each volume contains a short index of names only and an analytical table of contents; a comprehensive index to the complete work is included in Volume VIII. Volume I covers three exceptionally productive years: Newton's final year as an undergraduate at Trinity College, Cambridge, and the two following years, part of which were spent at his home in Lincolnshire on account of the closure of the university during an outbreak of bubonic plague.
This volume reproduces the texts of a number of important, yet relatively minor papers, many written during a period of Newton's life (1677-84) which has been regarded as mathematically barren except for his Lucasian lectures on algebra (which appear in Volume V). Part 1 concerns itself with his growing mastery of interpolation by finite differences, culminating in his rule for divided differences. Part 2 deals with his contemporary advances in the pure and analytical geometry of curves. Part 3 contains the extant text of two intended treatises on fluxions and infinite series: the Geometria Curvilinea (c. 1680), and his Matheseos Universalis Specimina (1684). A general introduction summarizes the sparse details of Newton's personal life during the period, one - from 1677 onwards - of almost total isolation from his contemporaries. A concluding appendix surveys highlights in his mathematical correspondence during 1674-6 with Collins, Dary, John Smith and above all Leibniz.
This book is at once an analytical study of one of the most important mathematical texts of antiquity, the Mathematical Collection of the fourth-century AD mathematician Pappus of Alexandria, and also an examination of the work's wider cultural setting. An important first chapter looks at the mathematicians of the period and how mathematics was perceived by people at large. The central chapters of the book analyse sections of the Collection, identifying features typical of Pappus's mathematical practice. The final chapter draws together the various threads and presents a fuller description of Pappus's mathematical 'agenda'. This is one of few books to deal extensively with the mathematics of Late Antiquity. It sees Pappus's text as part of a wider context and relates it to other contemporary cultural practices and opens avenues to research into the public understanding of mathematics and mathematical disciplines in antiquity.
In this fascinating study, architect and Egyptologist Corinna Rossi analyses the relationship between mathematics and architecture in ancient Egypt by exploring the use of numbers and geometrical figures in ancient architectural projects and buildings. While previous architectural studies have searched for abstract 'universal rules' to explain the history of Egyptian architecture, Rossi attempts to reconcile the different approaches of archaeologists, architects and historians of mathematics into a single coherent picture. Using a study of a specific group of monuments, the pyramids, and placing them in the context of their cultural and historical background, Rossi argues that theory and practice of construction must be considered as a continuum, not as two separated fields, in order to allow the original planning process of a building to re-emerge. Highly illustrated with plans, diagrams and figures, this book is essential reading for all scholars of Ancient Egypt and the architecture of ancient cultures.
Prior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the twentieth century it came to encompass the study of abstract, axiomatic systems such as groups, rings, and fields. This presentation provides an account of the intellectual lineage behind many of the basic concepts, results, and theories of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared unsolvable by classical means. A major theme of the approach in this book is to show how abstract algebra has arisen in attempts to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved. Mathematics instructors, algebraists, and historians of science will find the work a valuable reference. The book may also serve as a supplemental text for courses in abstract algebra or the history of mathematics.
This is a study and translation of the Zhou bi suan jing, a Chinese work on astronomy and mathematics which reached its final form around the first century AD. The author provides the first easily accessible introduction to the developing mathematical and observational practices of ancient Chinese astronomers and shows how the generation and validation of knowledge about the heavens in Han dynasty China related closely to developments in statecraft and politics. The book will be of equal interest to historians of science and those studying the history of Chinese culture.
The Soviet school, one of the glories of twentieth-century mathematics, faced a serious crisis in the summer of 1936. It was suffering from internal strains due to generational conflicts between the young talents and the old establishment. At the same time, Soviet leaders (including Stalin himself) were bent on ``Sovietizing'' all of science in the USSR by requiring scholars to publish their works in Russian in the Soviet Union, ending the nearly universal practice of publishing in the West. A campaign to ``Sovietize'' mathematics in the USSR was launched with an attack on Nikolai Nikolaevich Luzin, the leader of the Soviet school of mathematics, in Pravda. Luzin was fortunate in that only a few of the most ardent ideologues wanted to destroy him utterly. As a result, Luzin, though humiliated and frightened, was allowed to make a statement of public repentance and then let off with a relatively mild reprimand. A major factor in his narrow escape was the very abstractness of his research area (descriptive set theory), which was difficult to incorporate into a propaganda campaign aimed at the broader public. The present book contains the transcripts of five meetings of the Academy of Sciences commission charged with investigating the accusations against Luzin, meetings held in July of 1936. Ancillary material from the Soviet press of the time is included to place these meetings in context.
Historical records show that there was no real concept of probability in Europe before the mid-seventeenth century, although the use of dice and other randomizing objects was commonplace. Ian Hacking presents a philosophical critique of early ideas about probability, induction, and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth, and seventeenth centuries. Hacking invokes a wide intellectual framework involving the growth of science, economics, and the theology of the period. He argues that the transformations that made it possible for probability concepts to emerge have constrained all subsequent development of probability theory and determine the space within which philosophical debate on the subject is still conducted. First published in 1975, this edition includes an introduction that contextualizes his book in light of developing philosophical trends. Ian Hacking is the winner of the Holberg International Memorial Prize 2009.
Symbols, Impossible Numbers, and Geometric Entanglements is the first history of the development and reception of algebra in early modern England and Scotland. Not primarily a technical history, this book analyzes the struggles of a dozen British thinkers to come to terms with early modern algebra, its symbolical style, and negative and imaginary numbers. Professor Pycior uncovers these thinkers as a "test-group" for the symbolic reasoning that would radically change not only mathematics but also logic, philosophy, and language studies. The book also shows how pedagogical and religious concerns shaped the British debate over the relative merits of algebra and geometry. The first book to position algebra firmly in the Scientific Revolution and pursue Newton the algebraist, it highlights Newton's role in completing the evolution of algebra from an esoteric subject into a major focus of British mathematics. Other thinkers covered include Oughtred, Harriot, Wallis, Hobbes, Barrow, Berkeley, and MacLaurin.
This book considers the manifold possible approaches, past and present, to our understanding of the natural numbers. They are treated as epistemic objects: mathematical objects that have been subject to epistemological inquiry and attention throughout their history and whose conception has evolved accordingly. Although they are the simplest and most common mathematical objects, as this book reveals, they have a very complex nature whose study illuminates subtle features of the functioning of our thought. Using jointly history, mathematics and philosophy to grasp the essence of numbers, the reader is led through their various interpretations, presenting the ways they have been involved in major theoretical projects from Thales onward. Some pertain primarily to philosophy (as in the works of Plato, Aristotle, Kant, Wittgenstein...), others to general mathematics (Euclid's Elements, Cartesian algebraic geometry, Cantorian infinities, set theory...). Also serving as an introduction to the works and thought of major mathematicians and philosophers, from Plato and Aristotle to Cantor, Dedekind, Frege, Husserl and Weyl, this book will be of interest to a wide variety of readers, from scholars with a general interest in the philosophy or mathematics to philosophers and mathematicians themselves.
This work documents the history of techniques that statisticians have used to manipulate economic, meteorological, biological and physical data taken from observations recorded over time. The manipulation tools include per cent change, index numbers, moving averages and 'first differences', i.e., subtracting one observation from the previous value. Professor Klein argues that nineteenth-century business journals, such as The Economist, were as important to the development of time series analysis as Latin treatises on probability theory. While examining the roots of mathematical statistics in commercial practice, she traces changes in analytical forms from table to graph to equation. Klein cautions that we risk measurement without history in unduly mechanistic blending of stationary probability theory with the practical dynamics of commercial traders. This history is accessible to students with a basic knowledge of statistics as well as financial analysts, statisticians and historians of economic thought and science.
As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging."
|
You may like...
Cyclomathesis - or, An Easy Introduction…
William 1701-1782 Emerson
Hardcover
R1,050
Discovery Miles 10 500
The Oxford Handbook of the History of…
Eleanor Robson, Jacqueline Stedall
Hardcover
R4,198
Discovery Miles 41 980
|