![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > History of mathematics
Karl Menger, one of the founders of dimension theory, is among the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced many of his colleagues. These two volumes contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, and also include material on economics, sociology, logic and philosophy. The Selecta Mathematica is a monument to the diversity and originality of Menger's ideas.
Karl Menger, one of the founders of dimension theory, is among the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced many of his colleagues. These two volumes contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, and also include material on economics, sociology, logic and philosophy. The Selecta Mathematica is a monument to the diversity and originality of Menger's ideas.
I.M. Gelfand (1913 - 2009), one of the world's leading contemporary mathematicians, largely determined the modern view of functional analysis with its numerous relations to other branches of mathematics, including mathematical physics, algebra, topology, differential geometry and analysis. In this three-volume Collected Papers Gelfand presents a representative sample of his work. Gelfand's research led to the development of remarkable mathematical theories - most of which are now classics - in the field of Banach algebras, infinite-dimensional representations of Lie groups, the inverse Sturm-Liouville problem, cohomology of infinite-dimensional Lie algebras, integral geometry, generalized functions and general hypergeometric functions. The corresponding papers form the major part of the collection. Some articles on numerical methods and cybernetics as well as a few on biology are also included. A substantial number of the papers have been translated into English especially for this edition. The collection is rounded off by an extensive bibliography with almost 500 references. Gelfand's Collected Papers will be a great stimulus, especially for the younger generation, and will provide a strong incentive to researchers.
This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
This review of literature on perspective constructions from the Renaissance through the 18th century covers 175 authors, emphasizing Peiro della Francesca, Guidobaldo del Monte, Simon Stevin, Brook Taylor, and Johann Heinrich. It treats such topics as the various methods of constructing perspective, the development of theories underlying the constructions, and the communication between mathematicians and artisans in these developments.
This book collects the papers of the conference held in Berlin, Germany, 27-29 August 2012, on 'Space, Geometry and the Imagination from Antiquity to the Modern Age'. The conference was a joint effort by the Max Planck Institute for the History of Science (Berlin) and the Centro die Ricerca Matematica Ennio De Giorgi (Pisa).
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi's most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter's prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi
Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi's most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter's prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi
Up to now there have been scarcely any publications on Leibniz dedicated to investigating the interrelations between philosophy and mathematics in his thought. In part this is due to the previously restricted textual basis of editions such as those produced by Gerhardt. Through recent volumes of the scientific letters and mathematical papers series of the Academy Edition scholars have obtained a much richer textual basis on which to conduct their studies - material which allows readers to see interconnections between his philosophical and mathematical ideas which have not previously been manifested. The present book draws extensively from this recently published material. The contributors are among the best in their fields. Their commissioned papers cover thematically salient aspects of the various ways in which philosophy and mathematics informed each other in Leibniz's thought.
Originally published in 1927, as the first of a two-part set, this informative and systematically organised textbook, primarily aimed at university students, contains a vectorial treatment of geometry, reasoning that by the use of such vector methods, geometry is able to be 'both simplified and condensed'. Chapters I-XI discuss the more elementary parts of the subject, whilst the remainder is devoted to an exploration of the more complex differential invariants for a surface and their applications. Chapter titles include, 'Curves with torsion', 'Geodesics and geodesic parallels' and 'Triply orthogonal systems of surfaces'. Diagrams are included to supplement the text. Providing a detailed overview of the subject and forming a solid foundation for study of multidimensional differential geometry and the tensor calculus, this book will prove an invaluable reference work to scholars of mathematics as well as to anyone with an interest in the history of education.
Pell and Pell-Lucas numbers, like the well-known Fibonacci and Catalan numbers, continue to intrigue the mathematical world with their beauty and applicability. They offer opportunities for experimentation, exploration, conjecture, and problem-solving techniques, connecting the fields of analysis, geometry, trigonometry, and various areas of discrete mathematics, number theory, graph theory, linear algebra, and combinatorics. Pell and Pell-Lucas numbers belong to an extended Fibonacci family as a powerful tool for extracting numerous interesting properties of a vast array of number sequences. A key feature of this work is the historical flavor that is interwoven into the extensive and in-depth coverage of the subject. An interesting array of applications to combinatorics, graph theory, geometry, and intriguing mathematical puzzles is another highlight engaging the reader. The exposition is user-friendly, yet rigorous, so that a broad audience consisting of students, math teachers and instructors, computer scientists and other professionals, along with the mathematically curious will all benefit from this book. Finally, Pell and Pell-Lucas Numbers provides enjoyment and excitement while sharpening the reader's mathematical skills involving pattern recognition, proof-and-problem-solving techniques.
Originally published in 1926, this book was written to provide mathematical and scientific students with an introduction to the subject of integral calculus. The text was largely planned around the syllabus for the Higher Certificate Examination. A short historical survey is included. This book will be of value to anyone with an interest in integral calculus, mathematics and the history of education.
Originally published in 1936, this book was written with the intention of preparing candidates for the Higher Certificate Examinations. The text was created to bridge the gap between introductions to differential and integral calculus and advanced textbooks on the subject. This volume will be of value to anyone with an interest in differential and integral calculus, mathematics and the history of education.
The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do come into opposition and can be used in different contexts. The goal here is to clarify the multi fold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.
The Finnish mathematician and astronomer Anders Johan Lexell (1740-1784) was a long-time close collaborator as well as the academic successor of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg. Lexell was initially invited by Euler from his native town of Abo (Turku) in Finland to Saint Petersburg to assist in the mathematical processing of the astronomical data of the forthcoming transit of Venus of 1769. A few years later he became an ordinary member of the Academy. This is the first-ever full-length biography devoted to Lexell and his prolific scientific output. His rich correspondence especially from his grand tour to Germany, France and England reveals him as a lucid observer of the intellectual landscape of enlightened Europe. In the skies, a comet, a minor planet and a crater on the Moon named after Lexell also perpetuate his memory.
Vladimir Maz'ya (born 1937) is an outstanding mathematician who systematically made fundamental contributions to a wide array of areas in mathematical analysis and in the theory of partial differential equations. In this fascinating book he describes the first thirty years of his life. He starts with the story of his family, speaks about his childhood, high school and university years, describe his formative years as a mathematician. Behind the author's personal recollections, with his own joys, sorrows and hopes, one sees a vivid picture of the time. He speaks warmly about his friends, both outside and inside mathematics. The author describes the awakening of his passion for mathematics and his early achievements. He mentions a number of mathematicians who influenced his professional life. The book is written in a readable and inviting way sometimes with a touch of humor. It can be of interest for a very broad readership.
This book presents new insights into Leibniz's research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler's influence on Leibniz's planetary theory and more generally, on Leibniz's concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz's works provide a frame of reference. The book then goes on to discuss research on Leibniz's conception of gravity and the connection between Leibniz and Kepler.
The book aims to provide an overview of the state of the art on the mechanics of arches and masonry structures. It is addressed to an international audience, arising from the international context in which the Associazione Edoardo Benvenuto has carried out its activities in recent years, under the honorary presidency of Jacques Heyman. The book belongs to the collection Between Mechanics and Architecture, born in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto (P. Radelet-de Grave, E. Benvenuto (eds.), Entre Mecanique et Architecture / Between Mechanics and Architecture, Birkhauser, Basel 1995).
This book presents the classical theory of curves in the plane and three-dimensional space, and the classical theory of surfaces in three-dimensional space. It pays particular attention to the historical development of the theory and the preliminary approaches that support contemporary geometrical notions. It includes a chapter that lists a very wide scope of plane curves and their properties. The book approaches the threshold of algebraic topology, providing an integrated presentation fully accessible to undergraduate-level students. At the end of the 17th century, Newton and Leibniz developed differential calculus, thus making available the very wide range of differentiable functions, not just those constructed from polynomials. During the 18th century, Euler applied these ideas to establish what is still today the classical theory of most general curves and surfaces, largely used in engineering. Enter this fascinating world through amazing theorems and a wide supply of surprising examples. Reach the doors of algebraic topology by discovering just how an integer (= the Euler-Poincare characteristics) associated with a surface gives you a lot of interesting information on the shape of the surface. And penetrate the intriguing world of Riemannian geometry, the geometry that underlies the theory of relativity. The book is of interest to all those who teach classical differential geometry up to quite an advanced level. The chapter on Riemannian geometry is of great interest to those who have to "intuitively" introduce students to the highly technical nature of this branch of mathematics, in particular when preparing students for courses on relativity.
The Almagest, by the Greek astronomer and mathematician Ptolemy, is the most important surviving treatise on early mathematical astronomy, offering historians valuable insight into the astronomy and mathematics of the ancient world. Pedersen's 1974 publication, A Survey of the Almagest, is the most recent in a long tradition of companions to the Almagest. Part paraphrase and part commentary, Pedersen's work has earned the universal praise of historians and serves as the definitive introductory text for students interested in studying the Almagest. In this revised edition, Alexander Jones, a distinguished authority on the history of early astronomy, provides supplementary information and commentary to the original text to account for scholarship that has appeared since 1974. This revision also incorporates various corrections to Pedersen's original text that have been identified since its publication. This volume is intended to provide students of the history of astronomy with a self-contained introduction to the Almagest, helping them to understand and appreciate Ptolemy's great and classical work.
The discovery of a gradual acceleration in the moon's mean motion by Edmond Halley in the last decade of the seventeenth century led to a revival of interest in reports of astronomical observations from antiquity. These observations provided the only means to study the moon's 'secular acceleration', as this newly-discovered acceleration became known. This book contains the first detailed study of the use of ancient and medieval astronomical observations in order to investigate the moon's secular acceleration from its discovery by Halley to the establishment of the magnitude of the acceleration by Richard Dunthorne, Tobias Mayer and Jerome Lalande in the 1740s and 1750s. Making extensive use of previously unstudied manuscripts, this work shows how different astronomers used the same small body of preserved ancient observations in different ways in their work on the secular acceleration. In addition, this work looks at the wider context of the study of the moon's secular acceleration, including its use in debates of biblical chronology, whether the heavens were made up of aether, and the use of astronomy in determining geographical longitude. It also discusses wider issues of the perceptions and knowledge of ancient and medieval astronomy in the early-modern period. This book will be of interest to historians of astronomy, astronomers and historians of the ancient world.
This book presents a historical and scientific analysis as historical epistemology of the science of weights and mechanics in the sixteenth century, particularly as developed by Tartaglia in his Quesiti et inventioni diverse, Book VII and Book VIII (1546; 1554). In the early 16th century mechanics was concerned mainly with what is now called statics and was referred to as the Scientia de ponderibus, generally pursued by two very different approaches. The first was usually referred to as Aristotelian, where the equilibrium of bodies was set as a balance of opposite tendencies to motion. The second, usually referred to as Archimedean, identified statics with centrobarica, the theory of centres of gravity based on symmetry considerations. In between the two traditions the Italian scholar Niccolo Fontana, better known as Tartaglia (1500?-1557), wrote the treatise Quesiti et inventioni diverse (1546). This volume consists of three main parts. In the first, a historical excursus regarding Tartaglia's lifetime, his scientific production and the Scientia de ponderibus in the Arabic-Islamic culture, and from the Middle Ages to the Renaissance, is presented. Secondly, all the propositions of Books VII and VIII, by relating them with the Problemata mechanica by the Aristotelian school and Iordani opvsculvm de ponderositate by Jordanus de Nemore are examined within the history and historical epistemology of science. The last part is relative to the original texts and critical transcriptions into Italian and Latin and an English translation. This work gathers and re-evaluates the current thinking on this subject. It brings together contributions from two distinguished experts in the history and historical epistemology of science, within the fields of physics, mathematics and engineering. It also gives much-needed insight into the subject from historical and scientific points of view. The volume composition makes for absorbing reading for historians, epistemologists, philosophers and scientists.
A companion publication to the international exhibition "Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture", the catalogue explores the working lives and activities of Jewish mathematicians in German-speaking countries during the period between the legal and political emancipation of the Jews in the 19th century and their persecution in Nazi Germany. It highlights the important role Jewish mathematicians played in all areas of mathematical culture during the Wilhelmine Empire and the Weimar Republic, and recalls their emigration, flight or death after 1933.
This book honors the career of historian of mathematics J.L. Berggren, his scholarship, and service to the broader community. The first part, of value to scholars, graduate students, and interested readers, is a survey of scholarship in the mathematical sciences in ancient Greece and medieval Islam. It consists of six articles (three by Berggren himself) covering research from the middle of the 20th century to the present. The remainder of the book contains studies by eminent scholars of the ancient and medieval mathematical sciences. They serve both as examples of the breadth of current approaches and topics, and as tributes to Berggren's interests by his friends and colleagues. |
You may like...
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Introduction to Data Systems - Building…
Thomas Bressoud, David White
Hardcover
R2,267
Discovery Miles 22 670
Research Handbook of Financial Markets
Refet S. Gürkaynak, Jonathan H. Wright
Hardcover
R7,463
Discovery Miles 74 630
Reverse Stress Testing in Banking - A…
Michael Eichhorn, Tiziano Bellini, …
Hardcover
Forming Intentional Disciples - The Path…
Sherry A. Weddell
Paperback
Deep Learning for Chest Radiographs…
Yashvi Chandola, Jitendra Virmani, …
Paperback
R2,060
Discovery Miles 20 600
Taxonomy Matching Using Background…
Heiko Angermann, Naeem Ramzan
Hardcover
R1,009
Discovery Miles 10 090
|