![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
This book represents a new departure in science studies: an analysis of a scientific style of writing, situating it within the context of the contemporary style of literature. Its philosophical significance is that it provides a novel way of making sense of the notion of a scientific style. For the first time, the Hellenistic mathematical corpus - one of the most substantial extant for the period - is placed centre-stage in the discussion of Hellenistic culture as a whole. Professor Netz argues that Hellenistic mathematical writings adopt a narrative strategy based on surprise, a compositional form based on a mosaic of apparently unrelated elements, and a carnivalesque profusion of detail. He further investigates how such stylistic preferences derive from, and throw light on, the style of Hellenistic poetry. This important book will be welcomed by all scholars of Hellenistic civilization as well as historians of ancient science and Western mathematics.
The controversial matters surrounding the notion of anachronism are difficult ones: they have been broached by literary and art critics, by philosophers, as well as by historians of science. This book adopts a bottom-up approach to the many problems concerning anachronism in the history of mathematics. Some of the leading scholars in the field of history of mathematics reflect on the applicability of present-day mathematical language, concepts, standards, disciplinary boundaries, indeed notions of mathematics itself, to well-chosen historical case studies belonging to the mathematics of the past, in European and non-European cultures. A detailed introduction describes the key themes and binds the various chapters together. The interdisciplinary and transcultural approach adopted allows this volume to cover topics important for history of mathematics, history of the physical sciences, history of science, philosophy of mathematics, history of philosophy, methodology of history, non-European science, and the transmission of mathematical knowledge across cultures.
The primary purpose of this textbook is to introduce the reader to a wide variety of elementary permutation statistical methods. Permutation methods are optimal for small data sets and non-random samples, and are free of distributional assumptions. The book follows the conventional structure of most introductory books on statistical methods, and features chapters on central tendency and variability, one-sample tests, two-sample tests, matched-pairs tests, one-way fully-randomized analysis of variance, one-way randomized-blocks analysis of variance, simple regression and correlation, and the analysis of contingency tables. In addition, it introduces and describes a comparatively new permutation-based, chance-corrected measure of effect size. Because permutation tests and measures are distribution-free, do not assume normality, and do not rely on squared deviations among sample values, they are currently being applied in a wide variety of disciplines. This book presents permutation alternatives to existing classical statistics, and is intended as a textbook for undergraduate statistics courses or graduate courses in the natural, social, and physical sciences, while assuming only an elementary grasp of statistics.
This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi's scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.
This biography of the mathematician, Sophie Germain, paints a rich portrait of a brilliant and complex woman, the mathematics she developed, her associations with Gauss, Legendre, and other leading researchers, and the tumultuous times in which she lived. Sophie Germain stood right between Gauss and Legendre, and both publicly recognized her scientific efforts. Unlike her female predecessors and contemporaries, Sophie Germain was an impressive mathematician and made lasting contributions to both number theory and the theories of plate vibrations and elasticity. She was able to walk with ease across the bridge between the fields of pure mathematics and engineering physics. Though isolated and snubbed by her peers, Sophie Germain was the first woman to win the prize of mathematics from the French Academy of Sciences. She is the only woman who contributed to the proof of Fermat's Last Theorem. In this unique biography, Dora Musielak has done the impossible she has chronicled Sophie Germain's brilliance through her life and work in mathematics, in a way that is simultaneously informative, comprehensive, and accurate.
In 1859, German mathematician Bernhard Riemann presented a paper to the Berlin Academy that would forever change mathematics. The subject was the mystery of prime numbers. At the heart of the presentation was an idea that Riemann had not yet proved--one that baffles mathematicians to this day. Solving the Riemann Hypothesis could change the way we do business, since prime numbers are the lynchpin for security in banking and e-commerce. It would also have a profound impact on the cutting edge of science, affecting quantum mechanics, chaos theory, and the future of computing. Leaders in math and science are trying to crack the elusive code, and a prize of $1 million has been offered to the winner. In this engaging book, Marcus du Sautoy reveals the extraordinary history behind the holy grail of mathematics and the ongoing quest to capture it.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
Martin Folkes (1690-1754): Newtonian, Antiquary, Connoisseur is a cultural and intellectual biography of the only President of both the Royal Society and the Society of Antiquaries. Sir Isaac Newton's protege, astronomer, mathematician, freemason, art connoisseur, Voltaire's friend and Hogarth's patron, his was an intellectually vibrant world. Folkes was possibly the best-connected natural philosopher and antiquary of his age, an epitome of Enlightenment sociability, and yet he was a surprisingly neglected figure, the long shadow of Newton eclipsing his brilliant disciple. A complex figure, Folkes edited Newton's posthumous works in biblical chronology, yet was a religious skeptic and one of the first members of the gentry to marry an actress. His interests were multidisciplinary, from his authorship of the first complete history of the English coinage, to works concerning ancient architecture, statistical probability, and astronomy. Rich archival material, including Folkes's travel diary, correspondence, and his library and art collections permit reconstruction through Folkes's eyes of what it was like to be a collector and patron, a Masonic freethinker, and antiquarian and virtuoso in the days before 'science' became sub-specialised. Folkes's virtuosic sensibility and possible role in the unification of the Society of Antiquaries and the Royal Society tells against the historiographical assumption that this was the age in which the 'two cultures' of the humanities and sciences split apart, never to be reunited. In Georgian England, antiquarianism and 'science' were considered largely part of the same endeavour.
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.
The science of magic squares witnessed an important development in the Islamic world during the Middle Ages, with a great variety of construction methods being created and ameliorated. The initial step was the translation, in the ninth century, of an anonymous Greek text containing the description of certain highly developed arrangements, no doubt the culmination of ancient research on magic squares.
In this book, the author pays tribute to Bernhard Riemann (1826-1866), a mathematician with revolutionary ideas, whose work on the theory of integration, the Fourier transform, the hypergeometric differential equation, etc. contributed immensely to mathematical physics. The text concentrates in particular on Riemann's only work on prime numbers, including ideas - new at the time - such as analytical continuation into the complex plane and the product formula for entire functions. A detailed analysis of the zeros of the Riemann zeta-function is presented. The impact of Riemann's ideas on regularizing infinite values in field theory is also emphasized. This revised and enhanced new edition contains three new chapters, two on the application of Riemann's zeta-function regularization to obtain the partition function of a Bose (Fermi) oscillator and one on the zeta-function regularization in quantum electrodynamics. Appendix A2 has been re-written to make the calculations more transparent. A summary of Euler-Riemann formulae completes the book.
This expansive volume describes the history of numerical methods proposed to solve linear algebra problems,, from antiquity to the present day. The authors focus on methods for solving linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of the main important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, and to applied mathematiciansas well as to and historians of mathematics as well.
The first World Meeting for Women in Mathematics - (WM)(2) - was a satellite event of the International Congress of Mathematicians (ICM) 2018 in Rio de Janeiro. With a focus on Latin America, the first (WM)(2) brought together mathematicians from all over the world to celebrate women mathematicians, and also to reflect on gender issues in mathematics, challenges, initiatives, and perspectives for the future. Its activities were complemented by a panel discussion organized by the Committee for Women in Mathematics (CWM) of the International Mathematical Union (IMU) inside the ICM 2018 entitled "The gender gap in mathematical and natural sciences from a historical perspective". This historical proceedings book, organized by CWM in coordination with the Association for Women in Mathematics, records the first (WM)(2) and the CWM panel discussion at ICM 2018. The first part of the volume includes a report of activities with pictures of the first (WM)(2) and a tribute to Maryam Mirzakhani, the first woman to be awarded the Fields medal. It also comprises survey research papers from invited lecturers, which provide panoramic views of different fields in pure and applied mathematics. The second part of the book contains articles from the panelists of the CWM panel discussion, which consider the historical context of the gender gap in mathematics. It includes an analysis of women lecturers in the ICM since its inception. This book is dedicated to the memory of Maryam Mirzakhani.
This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled 'The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,' reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,' discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincare, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
This book seeks to explore the history of descriptive geometry in relation to its circulation in the 19th century, which had been favoured by the transfers of the model of the Ecole Polytechnique to other countries. The book also covers the diffusion of its teaching from higher instruction to technical and secondary teaching. In relation to that, there is analysis of the role of the institution - similar but definitely not identical in the different countries - in the field under consideration. The book contains chapters focused on different countries, areas, and institutions, written by specialists of the history of the field. Insights on descriptive geometry are provided in the context of the mathematical aspect, the aspect of teaching in particular to non-mathematicians, and the institutions themselves.
"Circles Disturbed" brings together important thinkers in mathematics, history, and philosophy to explore the relationship between mathematics and narrative. The book's title recalls the last words of the great Greek mathematician Archimedes before he was slain by a Roman soldier--"Don't disturb my circles"--words that seem to refer to two radically different concerns: that of the practical person living in the concrete world of reality, and that of the theoretician lost in a world of abstraction. Stories and theorems are, in a sense, the natural languages of these two worlds--stories representing the way we act and interact, and theorems giving us pure thought, distilled from the hustle and bustle of reality. Yet, though the voices of stories and theorems seem totally different, they share profound connections and similarities. A book unlike any other, "Circles Disturbed" delves into topics such as the way in which historical and biographical narratives shape our understanding of mathematics and mathematicians, the development of "myths of origins" in mathematics, the structure and importance of mathematical dreams, the role of storytelling in the formation of mathematical intuitions, the ways mathematics helps us organize the way we think about narrative structure, and much more. In addition to the editors, the contributors are Amir Alexander, David Corfield, Peter Galison, Timothy Gowers, Michael Harris, David Herman, Federica La Nave, G.E.R. Lloyd, Uri Margolin, Colin McLarty, Jan Christoph Meister, Arkady Plotnitsky, and Bernard Teissier.
This engaging book places Leonardo da Vinci's scientific achievements within the wider context of the rapid development that occurred during the Renaissance. It demonstrates how his contributions were not in fact born of isolated genius, but rather part of a rich period of collective advancement in science and technology, which began at least 50 years prior to his birth. Readers will discover a very special moment in history, when creativity and imagination were changing the future-shaping our present. They will be amazed to discover how many technological inventions had already been conceived or even designed by the engineers and inventors who preceded Leonardo, such as Francesco di Giorgio and Taccola, the so-called Siena engineers. This engaging volume features a wealth of illustrations from a variety of original sources, such as manuscripts and codices, enabling the reader to see and judge for him or herself the influence that other Renaissance engineers and inventors had on Leonardo.
This book describes in detail the various theories on the shape of the Earth from classical antiquity to the present day and examines how measurements of its form and dimensions have evolved throughout this period. The origins of the notion of the sphericity of the Earth are explained, dating back to Eratosthenes and beyond, and detailed attention is paid to the struggle to establish key discoveries as part of the cultural heritage of humanity. In this context, the roles played by the Catholic Church and the philosophers of the Middle Ages are scrutinized. Later contributions by such luminaries as Richer, Newton, Clairaut, Maupertuis, and Delambre are thoroughly reviewed, with exploration of the importance of mathematics in their geodetic enterprises. The culmination of progress in scientific research is the recognition that the reference figure is not a sphere but rather a geoid and that the earth's shape is oblate. Today, satellite geodesy permits the solution of geodetic problems by means of precise measurements. Narrating this fascinating story from the very beginning not only casts light on our emerging understanding of the figure of the Earth but also offers profound insights into the broader evolution of human thought.
The genesis of the digital idea and why it transformed civilization A few short decades ago, we were informed by the smooth signals of analog television and radio; we communicated using our analog telephones; and we even computed with analog computers. Today our world is digital, built with zeros and ones. Why did this revolution occur? The Discrete Charm of the Machine explains, in an engaging and accessible manner, the varied physical and logical reasons behind this radical transformation. The spark of individual genius shines through this story of innovation: the stored program of Jacquard's loom; Charles Babbage's logical branching; Alan Turing's brilliant abstraction of the discrete machine; Harry Nyquist's foundation for digital signal processing; Claude Shannon's breakthrough insights into the meaning of information and bandwidth; and Richard Feynman's prescient proposals for nanotechnology and quantum computing. Ken Steiglitz follows the progression of these ideas in the building of our digital world, from the internet and artificial intelligence to the edge of the unknown. Are questions like the famous traveling salesman problem truly beyond the reach of ordinary digital computers? Can quantum computers transcend these barriers? Does a mysterious magical power reside in the analog mechanisms of the brain? Steiglitz concludes by confronting the moral and aesthetic questions raised by the development of artificial intelligence and autonomous robots. The Discrete Charm of the Machine examines why our information technology, the lifeblood of our civilization, became digital, and challenges us to think about where its future trajectory may lead.
This book is about James Gregory's attempt to prove that the quadrature of the circle, the ellipse and the hyperbola cannot be found algebraically. Additonally, the subsequent debates that ensued between Gregory, Christiaan Huygens and G.W. Leibniz are presented and analyzed. These debates eventually culminated with the impossibility result that Leibniz appended to his unpublished treatise on the arithmetical quadrature of the circle. The author shows how the controversy around the possibility of solving the quadrature of the circle by certain means (algebraic curves) pointed to metamathematical issues, particularly to the completeness of algebra with respect to geometry. In other words, the question underlying the debate on the solvability of the circle-squaring problem may be thus phrased: can finite polynomial equations describe any geometrical quantity? As the study reveals, this question was central in the early days of calculus, when transcendental quantities and operations entered the stage. Undergraduate and graduate students in the history of science, in philosophy and in mathematics will find this book appealing as well as mathematicians and historians with broad interests in the history of mathematics.
xn + yn = zn, where n represents 3, 4, 5, ...no solution |
![]() ![]() You may like...
Marketing Concepts And Strategies
Sally Dibb, William Pride, …
Paperback
Services Marketing - A Contemporary…
Christo Boshoff, Adele Berndt
Paperback
![]() R796 Discovery Miles 7 960
|