Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies
This standard reference serves the industrial community as an authoritative source on cooling water problems. The problems of corrosion measurement and control are intensively examined and the more recently developed cooling water additives are reviewed. Advances in treatment chemicals and chemical cleaning are thoroughly explored.
This book uses case studies to discuss consumer awareness of and education on sustainable fashion. It highlights how some textile brands have started using consumer awareness tags to educate consumers on the use of their products (e.g. which machine cycle and temperature they should use to wash their products, as well as the best drying conditions in terms of environmental sustainability). Consumer awareness of and knowledge on sustainable fashion is the crux of customer-centric sustainability, and several NGOs and even brands have started taking essential steps to promote this.
This thesis describes novel strategies for the rational design of several cutting-edge high-efficiency photocatalysts, for applications such as water photooxidation, reduction, and overall splitting using a Z-Scheme system. As such, it focuses on efficient strategies for reducing energy loss by controlling charge transfer and separation, including novel faceted forms of silver phosphate for water photooxidation at record high rates, surface-basic highly polymerised graphitic carbon nitride for extremely efficient hydrogen production, and the first example of overall water splitting using a graphitic carbon nitride-based Z-Scheme system. Photocatalytic water splitting using solar irradiation can potentially offer a zero-carbon renewable energy source, yielding hydrogen and oxygen as clean products. These two 'solar' products can be used directly in fuel cells or combustion to provide clean electricity or other energy. Alternatively they can be utilised as separate entities for feedstock-based reactions, and are considered to be the two cornerstones of hydrogenation and oxidation reactions, including the production of methanol as a safe/portable fuel, or conventional catalytic reactions such as Fischer-Tropsch synthesis and ethylene oxide production. The main driving force behind the investigation is the fact that no photocatalyst system has yet reported combined high efficiency, high stability, and cost effectiveness; though cheap and stable, most suffer from low efficiency.
This thesis reports the latest developments in the direct amination of various C H bonds using an H Zn exchange/electrophilic amination strategy. McDonald and co-workers reveal this approach to be a rapid and powerful method for accessing a variety of functionalized amines. The material outlined in this book shows how McDonald achieved C H zincation using strong, non-nucleophilic zinc bases and subsequent electrophilic amination of the corresponding zinc carbanions with copper as a catalyst and O-benzoylhydroxylamines as the electrophilic nitrogen source. McDonald's findings are of relevance to medicinal chemistry, drug discovery and materials science. Her thesis is a source of inspiration for scientists entering the field and students beginning their PhD in a related area.
This thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.
This book addresses energy footprints in the food and textile sectors. Each footprint case study presents essential background information and discusses the scientific consensus, methodological framework, assessment checklist, calculation tools and techniques, applications, challenges and limitations. More importantly, the book explores the application of each indicator/framework in various industrial sectors and the associated challenges, as well as outlooks for the future - essential considerations, given that energy consumption and conservation are the primary elements in any industry's sustainability strategy.
This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles. Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.
This monograph provides an account of how the synthetic nitrogen industry became the forerunner of the 20th-century chemical industry in Europe, the United States and Asia. Based on an earlier SpringerBrief by the same author, which focused on the period of World War I, it expands considerably on the international aspects of the development of the synthetic nitrogen industry in the decade and a half following the war, including the new technologies that rivalled the Haber-Bosch ammonia process. Travis describes the tremendous global impact of fixed nitrogen (as calcium cyanamide and ammonia), including the perceived strategic need for nitrogen (mainly for munitions), and, increasingly, its role in increasing crop yields, including in Italy under Mussolini, and in the Soviet Union under Stalin. The author also reviews the situation in Imperial Japan, including the earliest adoption of the Italian Casale ammonia process, from 1923, and the role of fixed nitrogen in the industrialization of colonial Korea from the late 1920s. Chemists, historians of science and technology, and those interested in world fertilizer production and the development of chemical industry during the first four decades of the twentieth century will find this book of considerable value.
This book presents articles from the World Conference on Acoustic Emission 2019 (WCAE-2019) held at Guangdong, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. It brings together leading academicians and professionals in the field to foster collaboration and to enhance research in this important area, with wide ranging applications.
This book addresses the background and significance of the factors potentially influencing the clinical and biological outcomes of metal-on-metal hip implants.Metal-on-metal bearings were introduced and evaluated as an alternative to other bearing couples, particularly metal-on-polyethylene, due to their enhanced wear resistance as determined in laboratory testing.Initially, reports of short-term clinical outcomes were favorable and an increasing number of metal-on-metal prostheses were implanted. Subsequently, isolated case findings describing adverse tissue responses around the articulation became the harbinger of an increasing number of reports describing pseudotumors and other significant lymphocytic-based responses associated with metal-on-metal prostheses. Questions have been raised as to whether this is an implant, design, or patient-specific response. The reasons why some patients have a negative biological response and pathology while others do not remain to be determined, but tens of thousands of patients in the US, the UK, and around the world are considered to be at risk. Leading researchers and clinicians describe the issues related to the nature of the biological and pathological responses and the protocols that should be followed to determine if an adverse response is occurring. This book is essential reading for researchers, engineers, and orthopaedic surgeons who are involved in the design, evaluation, and implantation of metal-on-metal prostheses."
This book offers a straightforward, informative guide to the chemicals used for gas hydrate formation and inhibition, providing the reader with the latest information on the definition, structure, formation conditions, problems, and applications of gas hydrates. The authors review not only the inhibitors used to prevent or mitigate hydrate formation, but also the conditions under which it is necessary to form hydrates quickly, which require the use of promoters. Various promoters are discussed, including their specifications, functions, advantages and disadvantages. The possibility of using natural reservoirs of gas hydrate as an energy source is also considered. Lastly, due to the difficulty of conducting experiments that reflect all conditions and concentrations, the book presents a number of models that can predict the basic parameters in the presence of the chemicals. Given its scope, the book will be of interest to professionals working in this field in an industrial context, as well as to researchers, undergraduate and graduate students of chemical engineering.
This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.
This book presents the scientific principles, processing conditions, probable failure mechanisms, and a description of reliability performance and equipment required for implementing high-temperature and lead-free die attach materials. In particular, it addresses the use of solder alloys, silver and copper sintering, and transient liquid-phase sintering. While different solder alloys have been used widely in the microelectronics industry, the implementation of sintering silver and transient liquid-phase sintering remains limited to a handful of companies. Hence, the book devotes many chapters to sintering technologies, while simultaneously providing only a cursory coverage of the more widespread techniques employing solder alloys. Addresses the differences between sintering and soldering (the current die-attach technologies), thereby comprehensively addressing principles, methods, and performance of these high-temperature die-attach materials; Emphasizes the industrial perspective, with chapters written by engineers who have hands-on experience using these technologies; Baker Hughes, Bosch and ON Semiconductor, are represented as well as materials suppliers such as Indium; Simultaneously provides the detailed science underlying these technologies by leading academic researchers in the field.
This book reviews advances in cutting-edge micro-/nano-electrometers, and discusses the technological challenges involved in their practical implementation. The detection of electrostatic charge has a wide range of applications in ionization chambers, bio-analyte and aerosol particle instruments, mass spectrometers, scanning tunneling microscopes, and even quantum computers. Designing micro-/nano-electrometers (also known as charge sensors) for electrometry is considered vital because of the charge sensitivity and resolution issues at micro-/nano-scales. The remarkably dynamic microelectromechanical systems (MEMSs)/nanoelectromechanical systems (NEMSs), and advances in solid-state electronics, hold considerable potential for the design and fabrication of extremely sensitive charge sensors.
This book is dedicated to the rapidly growing field of microporous
ceramic membranes with separating layers of pore diameter less than
2nm.
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
This book draws on medical sociology and science and technology studies to develop a novel conceptual framework for understanding innovation processes, using the case study of deep brain stimulation in paediatric neurology. It addresses key questions, including: How are promising and potentially disruptive new health technologies integrated into busy resource-constrained clinical contexts? What activities are involved in establishing a new clinical service? How do social and cultural forces shape these services, and importantly, how are understandings of 'health' and 'illness' reconfigured in the process? The book explores how the ideals of patient-centred medicine influence innovation in the clinic, and it introduces the concept of patient-centred proto-platforms. It argues that patient-centred innovation can constitute an expansion of medical power, as the clinical gaze is directed not only towards the body but also towards the patient as a social being. This will be an innovative and insightful read for academics and advanced students, as well as health service researchers with an interest in technology adoption processes.
This book provides a comprehensive overview of the fascinating recent developments in atomic- and nanoscale magnetism, including the physics of individual magnetic adatoms and single spins, the synthesis of molecular magnets for spintronic applications, and the magnetic properties of small clusters as well as non-collinear spin textures, such as spin spirals and magnetic skyrmions in ultrathin films and nanostructures. Starting from the level of atomic-scale magnetic interactions, the book addresses the emergence of many-body states in quantum magnetism and complex spin states resulting from the competition of such interactions, both experimentally and theoretically. It also introduces novel microscopic and spectroscopic techniques to reveal the exciting physics of magnetic adatom arrays and nanostructures at ultimate spatial and temporal resolution and demonstrates their applications using various insightful examples. The book is intended for researchers and graduate students interested in recent developments of one of the most fascinating fields of condensed matter physics.
This book covers the recent research advances on the utilization of date palm fibers as a new source of cellulosic fibers that can be used in the reinforcement of polymer composites. It discusses the competitive mechanical, physical, and chemical properties which make date palm fibers stand out as an alternative to other fibers currently used in the natural fiber composites market. This volume will be useful to researchers working on natural fiber composites and fiber reinforced composites looking to develop green, biodegradable and sustainable components for application in automotive, marine, aerospace, construction, wind energy and consumer goods sectors.
Describes high temperature corrosion of ceramics. In addition to pure single crystals or CVD materials, typical engineering materials of various purities were also studied. The environments used to produce corrosion were selected based on the likelihood of their being encountered in practice and their severity. The ceramic materials developed corrosion resistance by being immune to the environment or by developing passivity.
This book examines the fundamental concepts of multimodality small-animal molecular imaging technologies and their numerous applications in biomedical research. Driven primarily by the widespread availability of various small-animal models of human diseases replicating accurately biological and biochemical processes in vivo, this is a relatively new yet rapidly expanding field that has excellent potential to become a powerful tool in biomedical research and drug development. In addition to being a powerful clinical tool, a number of imaging modalities including but not limited to CT, MRI, SPECT and PET are also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. In vivo small-animal imaging is playing a pivotal role in the scientific research paradigm enabling to understand human molecular biology and pathophysiology using, for instance, genetically engineered mice with spontaneous diseases that closely mimic human diseases.
This volume presents the latest developments in the use of organometallic catalysis for the formation of bulk chemicals and the production of energy, via green processes including efficient utilization of waste feedstocks from industry. The chemistry of carbon dioxide relating to its hydrogenation into methanol -an eco-friendly energy storage strategy- and its uses as C1 synthon for the formation of important building-blocks for fine chemicals industry are covered. Catalytic hydrogenations of various functional groups and hydrogen transfer reactions including the use of first row metal catalysts are presented as well as the conversion of alcohols to carboxylates via hydrogen transfer with a zero-waste strategy using water. Transformation of renewable or bio-based raw materials is surveyed through alkene metathesis and C-O bond activations and functionalizations. A green aspect for selective formation of C-C, C-O and C-N bonds involves direct regioselective C-H bond activations and functionalizations. These transformations can now be promoted under mild reaction conditions due to the use photoredox catalyts. C-H bond oxidation using visible light leads mainly to the formation of C-O and C-N bonds, whereas cross-coupled C-C bonds can be formed through the radical additions on (hetero) arenes using photoredox assisted mechanism.
This book provides background and guidance on the use of the structural hot-spot stress approach to fatigue analysis. The book also offers Design S-N curves for use with the structural hot-spot stress for a range of weld details, and presents parametric formulas for calculating stress increases due to misalignment and structural discontinuities. Highlighting the extension to structures fabricated from plates and non-tubular sections. The structural hot-spot stress approach focuses on cases of potential fatigue cracking from the weld toe and it has been in use for many years in tubular joints. Following an explanation of the structural hot-spot stress, its definition and its relevance to fatigue, the book describes methods for its determination. It considers stress determination from both finite element analysis and strain gauge measurements, and emphasizes the use of finite element stress analysis, providing guidance on the choice of element type and size for use with either solid or shell elements. Lastly, it illustrates the use of the recommendations in four case studies involving the fatigue assessment of welded structures using the structural hot-spot stress
|
You may like...
Lactic Acid Bacteria - Microbiological…
Gabriel Vinderola, Arthur Ouwehand, …
Hardcover
R7,464
Discovery Miles 74 640
African Natural Plant Products - New…
H. Rodolfo Juliani, James Simon
Hardcover
R6,886
Discovery Miles 68 860
Steel - The Story of Pittsburgh's Iron…
Dale Richard Perelman
Paperback
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Pesticides in Household, Structural and…
Chris Peterson, Daniel Stout
Hardcover
R2,576
Discovery Miles 25 760
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,252
Discovery Miles 32 520
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,226
Discovery Miles 22 260
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
|