Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies
This book highlights the advances in essential oil research, from the plant physiology perspective to large-scale production, including bioanalytical methods and industrial applications. The book is divided into 4 sections. The first one is focused on essential oil composition and why plants produce these compounds that have been used by humans since ancient times. Part 2 presents an update on the use of essential oils in various areas, including food and pharma industries as well as agriculture. In part 3 readers will find new trends in bioanalytical methods. Lastly, part 4 presents a number of approaches to increase essential oil production, such as in vitro and hairy root culture, metabolic engineering and biotechnology. Altogether, this volume offers a comprehensive look at what researchers have been doing over the last years to better understand these compounds and how to explore them for the benefit of the society.
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
The influence of size effects on the properties of nanostructures is subject of this book. Size and interfacial effects in oxides, semiconductors, magnetic and superconducting nanostructures, from very simple to very complex, are considered. The most general meaning is assumed for size effects, including not only the influence of a reduced dimension/dimensionality, but also specific interfacial effects. Preparation and characterization tools are explained for various nanostructures. The specific applications are discussed with respect to size-related properties. A logic implication of type phenomenon-property-material-application is envisaged throughout this work.
This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering "traditional" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and first-principles level) and the structure of materials for which, quite often, direct experimental structural information is rather scarce or absent. The book features specific examples of how quite subtle features of the structure of glasses can be unraveled by relying on the predictive power of molecular dynamics, used in connection with a realistic description of forces.
This book covers various aspects of thermal energy storage. It looks at storage methods for thermal energy and reviews the various materials that store thermal energy and goes on to propose advanced materials that store energy better than conventional materials. The book also presents various thermophysical properties of advanced materials and the role of thermal energy storage in different applications such as buildings, solar energy, seawater desalination and cooling devices. The advanced energy storage materials have massive impact on heat transfer as compared to conventional energy storage materials. A concise discussion regarding current status, leading groups, journals and the countries working on advanced energy storage materials has also been provided. This book is useful to researchers, professionals and policymakers alike.
Recent developments in high performance thermoplastic resins and their composites are described in this book, and the benefits and limitations of these emerging materials are assessed for aerospace and other applications. Discussions on the performance of neat and continuous fiber reinforced thermoplastic resins in terms of their properties and environmental and chemical resistance are provided.
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
Among the most promising techniques to handle small objects at the micrometer scale are those that employ electrical forces, which have the advantages of voltage-based control and dominance over other forces. The book provides a state-of-the-art knowledge on both theoretical and applied aspects of the electrical manipulation of colloidal particles and fluids in microsystems and covers the following topics: dielectrophoresis, electrowetting, electrohydrodynamics in microsystems, and electrokinetics of fluids and particles. The book is addressed to doctoral students, young or senior researchers, chemical engineers and/or biotechnologists with an interest in microfluidics, lab-on-chip or MEMS.
This book covers virtually all of the engineering science and technological aspects of separating water from particulate solids in the mining industry. It starts with an introduction to the field of mineral processing and the importance of water in mineral concentrators. The consumption of water in the various stages of concentration is discussed, as is the necessity of recovering the majority of that water for recycling. The book presents the fundamentals under which processes of solid-liquid separation are studied, approaching mixtures of discrete finely divided solid particles in water as a basis for dealing with sedimentation in particulate systems. Suspensions, treated as continuous media, provide the basis of sedimentation, flows through porous media and filtration. The book also considers particle aggregations, and thickening is analyzed in depth. Lastly, two chapters cover the fundamentals and application of rheology and the transport of suspensions. This work is suitable for researchers and professionals in
laboratories and plants, and can also serve as additional
readingfor graduate seminars on solid liquid separation as well as
for advanced undergraduate and graduate level studentsfor courses
of fluid mechanics, solid-liquid separation, thickening, filtration
and transport of suspensions in tubes and channels.
The aim of the food processing is to ensure microbiological and chemical safety of foods, adequate nutrient content and bioavailability, and acceptability to the consumer with regard to sensory properties and ease of preparation. Processingmay have either beneficial or harmful effects on these properties, so each of these factors must be taken into account in the design and preparation of foods. This book offers a unique dealing with the subject and provides not only an update of state-of-the art techniques in many critical areas of food processing and quality assessment, but also the development of value added products from food waste, safety and nanotechnology in the food and agriculture industry, and looks into the future by defining current obstacles and future research goals. This book is not intended to serve as an encyclopedic review of the subject. However, the various chapters incorporate both theoretical and practical aspects and may serve as baseline information for future research through which significant development is possible."
This book features carefully selected articles on emerging technologies for waste valorization and environmental protection. The term "waste valorization" is used particularly in engineering, economics, technology, business, environmental and policy literature to refer to any unit operation or collection of operations targeted at reusing, recycling, composting or converting wastes into useful products or energy sources without harming the environment. The book discusses the rudimentary concept, and describes a range of emerging technologies in the field, including nano, fuel-cell and membrane technologies, as well as membrane bioreactors. It also examines in detail essential and common processes in waste valorization, such as rigorous chemical engineering applications, mathematical modeling and other trans-disciplinary approaches. The chapters present high-quality research papers from the IconSWM 2018 conference.
This edited book comprises of eight chapters dealing on various aspects of pharmaceutical technology for delivery of natural products. Book chapters deal with the solubility and bioavailability enhancement technologies for natural products. Emphasis has also been given on the significance of delivery strategies for improving the therapeutic efficacy of paclitaxel, galantamine and tea constituents.
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry.
The capability to generate potable water from polluted sources is growing in importance as pharmaceuticals, microplastics and waste permeate our soil. Nanotechnology allows for improvements in water remediation technologies by taking advantage of the unique properties of materials at this small scale.
Fluorine chemistry is an expanding area of research that is attracting international interest, due to the impact of fluorine in drug discovery and in clinical and molecular imaging (e.g. PET, MRI). Many researchers and academics are entering this area of research, while scientists in industrial and clinical environments are also indirectly exposed to fluorine chemistry through the use of fluorinated compounds for imaging.This book provides an overview of the impact that fluorine has made in the life sciences. In the first section, the emphasis is on how fluorine substitution of amino acids, peptides, nucleobases and carbohydrates can provide invaluable information at a molecular level. The following chapters provide answers to the key questions posed on the importance of fluorine in drug discovery and clinical applications. For examples, the reader will discover how fluorine has found its place as a key element improving drug efficacy, with reference to some of the best-selling drugs on the market. Finally, a thorough review on the design, synthesis and use of 18F-radiotracers for positron emission tomography is provided, and this is complemented with a discussion on how 19F NMR has advanced molecular and clinical imaging.
This volume gives a detailed account into how renewables can be transformed into value-added products via homogeneous catalysis, especially via transiton metal homogeneous catalysis. The most important catalytic reactions of oleochemicals, isoprenoids, carbohydrates, lignin, proteins and carbon dioxide are described. Special emphasis is placed on carbon-carbon linkage reactions (hydroformylations, dimerisations, telomerisations, metathesis, polymerisations etc.), hydrogenations, oxidations and other important homogeneous reactions (such as isomerisations, hydrosilylations etc.). Also, tandem reactions including isomerising hydroformylations are presented. Wherever possible, the authors have included mechanistic, kinetic, and technical aspects. The reader is therefore given a total overview of the status quo of homogeneous catalysis directed to the most important renewables.
Foams are ubiquitous in our daily lives. Their presence is highly desirable in certain foods, drinks and cosmetics, and they are essential in oil recovery and mineral extraction. In some industrial processes (such as the manufacture of glass, paper and wine) foams are an unwelcome by-product. Why do they appear? What controls the rate at which they disappear? Do they flow in the same way as ordinary liquids? All of these questions and more are addressed here, incorporating significant recent contributions to the field of foams. This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
This book focuses on the current state of the art of the novel cold spray process. Cold spray is a solid state metal consolidation process, which allows engineers to tailor surface and shape properties by optimizing process parameters, powder characteristics and substrate conditions for a wide variety of applications that are difficult or impossible by other techniques. Readers will benefit from this book's coverage of the commercial evolution of cold spray since the 1980's and will gain a practical understanding of what the technology has to offer.
In recent years, professionals have combined nutrition, health, and engineering sciences to develop new technologies within the food industry. As we are beginning to shift focus on how we view the health benefits of various food products, perseveration and processing techniques have become much more vital. New developments regarding how we store and preserve food are emerging rapidly, making it necessary for research to be done that studies the latest scientific improvements and contemporary methods of food processing. Technological Developments in Food Preservation, Processing, and Storage is a collection of innovative research on the latest developments and advancements of preservation technologies and storage methods within the food processing industry. While highlighting topics including nutritional supplements, microfiltration, and thermal technology, this book is ideally designed for biologists, nutrition scientists, health professionals, engineers, government officials, policymakers, food service professionals, industry practitioners, researchers, academicians, and students.
This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.
This third edition, edited by Peter M. Martin, "PNNL 2005 Inventor
of the Year," is an extensive update of the many improvements in
deposition technologies, mechanisms, and applications. This
long-awaited update includes updated and new chapters on atomic
layer deposition, cathodic arc deposition, sculpted thin films,
polymer thin films and emerging technologies. Extensive material
was added throughout the book, especially in the areas concerned
with Plasma Assisted Vapor Deposition processes and Metallurgical
Coating Applications. - Explains in depth the many recent improvements in deposition
technologies and applications - Thoroughly explains deposition technologies and their current
applications - Discusses the numerous 'frontier areas' for the applications of the products of deposition technology
High-technology industries using plastic deformation demand
soundly-based economical decisions in manufacturing design and
product testing, and the unified constitutive laws of plastic
deformation give researchers aguideline to use in making these
decisions. This book provides extensive guidance in low cost
manufacturing without the loss of product quality. Each highly
detailed chapter of Unified Constitutive Laws of Plastic
Deformation focuses on a distinct set of defining equations. Topics
covered include anisotropic and viscoplastic flow, and the overall
kinetics and thermodynamics of deformation. This important book
deals with a prime topic in materials science and engineering, and
will be of great use toboth researchers and graduate students.
Japanese semiconductor firms are well known for obtaining dynamics in a short period of time and achieving even global leadership. A significant portion of their success are attributable to cooperative interfirm relations and the development of intermediate organizational structure based on long-term relationship between firms. The purpose of this book is to explain how interfirm relations contributed to their dynamics during the golden age of the semiconductor industry. Meanwhile this book clarifies the real source of dynamics in interfirm relations and how the firms have interacted. The author concludes that the competitive-cum-cooperative (CCC) interfirm interaction are observed. Quantitative and qualitative findings show that firms enjoy not only flexible cooperation based synergy effects, but also dynamics market-like effects by creating competition among partners through CCC interaction.
Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation. |
You may like...
Nutraceutical Beverages - Chemistry…
Fereidoon Shahidi, Deepthi K. Weerasinghe
Hardcover
R2,774
Discovery Miles 27 740
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
Research Anthology on Food Waste…
Information Reso Management Association
Hardcover
R8,720
Discovery Miles 87 200
Nutrition in Traditional Therapeutic…
G & Subhadra M Subbulakshmi
Hardcover
R2,352
Discovery Miles 23 520
|