Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry
This book focuses on various types of bioactive compounds, including secondary metabolites, oligosaccharides, polysaccharides, flavonoids, peptides/proteins, carotenoid pigments, quinones, terpenes, and polyunsaturated fatty acids, and presents an overview of their nutraceutical activities. It covers the current status and future potential of food compounds, as well as extraction technologies for bioactives derived from plant, fungi and marine-derived bioactive agents. Finally, health-promoting effects of plant, fungi and marine-derived bioactive agents are discussed. Chapters come from top researchers in this area from around the globe. The volume caters to the needs of undergraduate and post-graduate students in the area of food biotechnology, food bioprocessing, biotechnology, food engineering, etc., and also contains information pertinent to researchers.
This monograph presents a new analytical approach to the design of proportional-integral-derivative (PID) controllers for linear time-invariant plants. The authors develop a computer-aided procedure, to synthesize PID controllers that satisfy multiple design specifications. A geometric approach, which can be used to determine such designs methodically using 2- and 3-D computer graphics is the result. The text expands on the computation of the complete stabilizing set previously developed by the authors and presented here. This set is then systematically exploited to achieve multiple design specifications simultaneously. These specifications include classical gain and phase margins, time-delay tolerance, settling time and H-infinity norm bounds. The results are developed for continuous- and discrete-time systems. An extension to multivariable systems is also included. Analytical Design of PID Controllers provides a novel method of designing PID controllers, which makes it ideal for both researchers and professionals working in traditional industries as well as those connected with unmanned aerial vehicles, driverless cars and autonomous robots.
The Romance of Science pays tribute to the wide-ranging and highly influential work of Trevor Levere, historian of science and author of Poetry Realised in Nature, Transforming Matter, Science and the Canadian Arctic, Affinity and Matter and other significant inquiries in the history of modern science. Expanding on Levere's many themes and interests, The Romance of Science assembles historians of science -- all influenced by Levere's work -- to explore such matters as the place and space of instruments in science, the role and meaning of science museums, poetry in nature, chemical warfare and warfare in nature, science in Canada and the Arctic, Romanticism, aesthetics and morals in natural philosophy, and the "dismal science" of economics. The Romance of Science explores the interactions between science's romantic, material, institutional and economic engagements with Nature.
Celebrating the founding of the Flavor Subdivision of the Agriculture and Food Chemistry Division of the American Chemical Society, this book provides an overview of progress made during the past 30-40 years in various aspects of flavor chemistry as seen by internationally renowned scientists in the forefront of their respective fields. In addition, it presents up-to-date findings in the areas of flavor chemistry, analytical methods, thermally produced flavors and precursors, enzymatically produced flavors and precursors, and sensory methods and results.
A huge variety of biopolymers - such as polysaccharides, polyesters, and polyamides - are naturally produced by microorganisms. These range from viscous solutions to plastics. Their physical properties are dependent on the composition and molecular weight of the polymer. The genetic manipulation of microorganisms opens up an enormous potential for the biotechnological production of biopolymers with tailored properties suitable for high-value medical application such as tissue engineering and drug delivery. Written by expert, internationally renowned scientists, this comprehensive volume describes in detail the use of microorganisms for the production of the most important biopolymers and polymer precursors. The contributors describe in depth the biosynthetic pathways, physical properties, and industrial production processes; and they discuss in detail the genetic and metabolic engineering of microorganisms for biopolymer production. Also highlighted are the applications and potential applications of the biopolymers and microbial biotechnology. Topics include the biochemistry and genetics of biosynthesis of xanthan, alginate, cellulose, cyanophycin, poly(gamma-glutamic acid), levan, hyaluronic acid, organic acids, oligosaccharides and polysaccharides, and polyhydroxyalkanoates. This book is recommended book for all biotechnology and microbiology laboratories.
This is a new book on food process engineering which treats the principles of processing in a scientifically rigorous yet concise manner, and which can be used as a lead in to more specialized texts for higher study. It is equally relevant to those in the food industry who desire a greater understanding of the principles of the food processes with which they work. This text is written from a quantitative and mathematical perspective and is not simply a descriptive treatment of food processing. The aim is to give readers the confidence to use mathematical and quantitative analyses of food processes and most importantly there are a large number of worked examples and problems with solutions. The mathematics necessary to read this book is limited to elementary differential and integral calculus and the simplest kind of differential equation.
Provides exclusive material on refractories Discusses detailed descriptions of different shaped and unshaped refractories Uses phase diagrams for better understanding of concepts Explores details on testing and specifications including thermochemical and corrosion behaviour Includes a separate chapter on trends of refractories and other issues
This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lately, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.
Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While the book is intended for this audience, it will also interest researchers and graduate students interested in the mechanics and materials aspects of this matter.
Promotes the use of iron-containing nanoadditive in bakery and confectionary Explains the use of food additives for enrichment of butter mixtures Covers the use of artichoke powder and buckwheat bran in diabetic bakery products Describes the use of milk proteins in the technology of bakery products Proposes the use of spice compositions for sour milk products
Biomass conversion research is a combination of basic science, applied science, and engineering testing and analysis. Conversion science includes the initial treatment (called pre-treatment) of the feedstock to render it more amenable to enzyme action, enzymatic saccharification, and finally product formation by microbiological or chemical processes. In Biomass Conversion: Methods and Protocols, expert researchers in the field detail methods which are now commonly used to study biomass conversion. These methods include Biomass Feedstocks and Cellulose, Plant Cell Wall Degrading Enzymes and Microorganisms, and Lignins and Hemicelluloses. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting informed, reproducible results in the laboratory.
This book examines in detail key aspects of sustainability in the textile industry, especially environmental, social and economic sustainability in the textiles and clothing sector. It highlights the various faces and facets of sustainability and their implications for textiles and the clothing sector.
Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.
Contemporary wine marketing practice is changing rapidly due to the intensity of industry competition, the emergence of numerous media options, and the dynamics of market segments. As new wineries emerge onto the global stage, both they and the entrenched firms must remain well-informed and leverage the latest marketing and sales approaches in order to succeed. Contemporary Wine Marketing and Supply Chain Management intricately weaves academic knowledge, practical insights, and firsthand wisdom from wine executives around the world. Drawing on over 200 interviews and visits with winery owners, executives and managers in five countries, industry experts across marketing and supply chain management examine successful marketing frameworks as they apply to growers, wineries, distributors, and retailers. Combined with contemporary expertise in brand management, sales, research, social media, this book explores exciting and effective business practices and offers contemporary marketing ideas that will help wineries thrive.
Biohydrogen is considered the most promising energy carrier and its utilization for energy storage is a timely technology. This book presents latest research results and strategies evolving from an international research cooperation, discussing the current status of Biohydrogen research and picturing future trends and applications.
This book focuses on droplets and sprays and their applications. It discusses how droplet level transport is central to a multitude of applications and how droplet level manipulation and control can enhance the efficiency and design of multiphase systems. Droplets and sprays are ubiquitous in a variety of multiphase and multiscale applications in surface patterning, oil recovery, combustion, atomization, spray drying, thermal barrier coating, renewable energy, and electronic cooling, to name but a few. This book provides two levels of details pertaining to such applications. Each chapter delves into a specific application and provides not only an overview but also detailed physical insights into the application mechanism from the point of view of droplets and sprays. All chapters provide a mix of cutting-edge applications, new diagnostic techniques and modern computational methodologies, as well as the fundamental physical mechanism involved in each application. Taken together, the chapters provide a translational perspective on these applications, from basic transport processes to optimization, and from design to implementation using droplets or sprays as fundamental building blocks. Given its breadth of coverage, the book will be of interest to students, researchers, and industry professionals alike.
This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science, quantum mechanics, and electrodynamics. It is suitable for both advanced undergraduate and graduate students as well as practicing researchers.
Proceedings of The 7th World Conference on Biodegradable Polymers
& Plastics organized by the European Degradable Polymer Society
in conjunction with the Bioenvironmental Polymer Society and the
Biodegradale Plastics Society, under the auspices of ICS-UNIDO
(Italy) and INSTM Consortium (Italy) and under the patronage of
IUPAC - International Union of Pure and Applied Chemistry (USA) and
Ministero dell'Ambiente e della Tutela del Territorio (Italy), held
in Tirrenia (Pisa), Italy, on June 4-8, 2002. -Environmentally Degradable Polymeric Materials (EDPs);
This book provides researchers and graduate students with an overview of the latest developments in and applications of adsorption processes for water treatment and purification. In particular, it covers current topics in connection with the modeling and design of adsorption processes, and the synthesis and application of cost-effective adsorbents for the removal of relevant aquatic pollutants. The book describes recent advances and alternatives to improve the performance and efficacy of this water purification technique. In addition, selected chapters are devoted to discussing the reliable modeling and analysis of adsorption data, which are relevant for real-life applications to industrial effluents and groundwater.
This book highlights a novel and robust platform in the form of in-situ characterization setup for creating X-ray computed tomography (XCT)-based textile material twins. In this hybrid experimental-numerical platform, XCT images of different complex fibrous reinforcements at different levels of compaction are acquired. The images are converted into computational models for resin flow simulations. The capabilities of this hybrid framework are applied to a variety of reinforcements used in liquid composite molding processes such as 2D, 3D fabrics and dry tapes. This book is a milestone in the development of virtual manufacturing protocols using material twins of textiles, providing a step closer to the digitalization of advanced composites used in manufacturing processes for industry 4.0.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Sol-Gel Processing for Conventional and Alternative Energy is a comprehensive source of information on the use of sol-gel processing in materials in energy systems, conversion, storage, and generation. The volume editors include numerous applications, primarily in nuclear fuel processing, electrolytes for fuel cells, and dye-sensitized solar cells (DSSC). In addition to examining contemporary processing, properties, and industrial applications, "Sol-Gel Processing for Conventional and Alternative Energy" identifies materials challenges presented by conventional and alternative energy generation that require new materials and innovative processing. Each chapter is written by an internationally respected researcher. The book provides a state-of-the-art treatment of different aspects of materials for energy production, with a focus on processing, and covers related topics such as carbon sequestration, clean energy, and biofuels.
This doctoral thesis explains the synthesis and characterization of novel, smart hybrid nanomaterials. Bastian Ebeling combines in this work synthetic polymers with inorganic nanoparticles from silica or gold. The first chapters offer a comprehensive introduction to basics of polymer science and the applied methodologies. In following chapters, the author describes in detail how he systematically tailored the polymers using reversible addition-fragmentation chain transfer polymerization (RAFT) for combination with inorganic nanoparticles. This work also unravels mechanistic, thermodynamic, and structural aspects of all building blocks and reaction steps. The method described here is simple to perform and opens up pathways to new sets of nanohybrid materials with potential applications as sensors, in energy conversion, or catalysis. Readers will find a unique picture of the step-by step formation of new complex nanomaterials. It offers polymer scientists a systematic guide to the formation and synthesis of a new class of responsive nanomaterials.
Precursors of the modern chemical industry began to emerge in Northern Europe in the middle of the eighteenth century. The Industrial Revolution boosted activities such as soap-making, glassmaking and textiles production, which required increasing quantities of chemical products. The Lead Chamber process for the manufacture of sulphuric acid, required for the production of dye, was developed in the 1740s by John Roebuck then based in Birmingham. Production of this key commodity rose steadily. By the 1820s, British annual production had reached 10 000 tons of 100% acid. By 1900, Britain was producing one quarter of the world's output with an annual production approaching one million tons. Demand for alkalis for glassmaking and soap-making, for textile dyes and for bleach was also growing rapidly in the second half of the eighteenth century, and it became clear that existing sources of these materials would not be sufficient. In response to a prize established by the Academie des Sciences, Nicholas Leblanc had devised by 1791 a method for converting common salt into soda ash, which was to become the central operation of the world alkali industry for about one hundred years. |
You may like...
Authentication of Food and Wine
Susan E. Ebeler, Gary R. Takeoka, …
Hardcover
R3,096
Discovery Miles 30 960
Chemistry of Food, Food Production, and…
Mark a. Benvenuto, Satinder Ahuja, …
Hardcover
R5,398
Discovery Miles 53 980
Chemistry of Wine Flavor
Andrew L. Waterhouse, Susan E. Ebeler
Hardcover
R1,973
Discovery Miles 19 730
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,856
Discovery Miles 38 560
The Birth of Bourbon - A Photographic…
Carol Peachee, Jim Gray
Hardcover
Recent Advances in Disinfection…
Tanju Karanfil, Bill Mitch, …
Hardcover
R5,883
Discovery Miles 58 830
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,419
Discovery Miles 54 190
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,252
Discovery Miles 32 520
|