![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry
This third edition retains the general level and scope of earlier editions, but has been substantially updated with over 900 new references covering the literature through 2005, and 140 more pages of text than the previous edition. In addition to the general updating of materials, there is new or greatly expanded coverage of topics such as Curtin-Hammett conditions, pressure effects, metal hydrides and asymmetric hydrogenation catalysts, the inverted electron-transfer region, intervalence electron transfer, photochemistry of metal carbonyls, methyl transferase and nitric oxide synthase. The new chapter on heterogeneous systems introduces the basic background to this industrially important area. The emphasis is on inorganic examples of gas/liquid and gas/liquid/solid systems and methods of determining heterogeneity.
Carbon Dioxide Recovery and Utilization is a complete and informative resource on the carbon dioxide sources and market at the European Union level, with reference to the world situation. The book covers the following themes: - Sources of carbon dioxide and their purity,
Metal-Organic Frameworks for Environmental Applications examines this important topic, looking at potential materials and methods for the remediation of pressing pollution issues, such as heavy-metal contaminants in water streams, radioactive waste disposal, marine oil-spillage, the treatment of textile and dye industry effluents, the clean-up of trace amounts of explosives in land and water, and many other topics. This survey of the cutting-edge research and technology of MOFs is an invaluable resource for researchers working in inorganic chemistry and materials science, but it is also ideal for graduate students studying MOFs and their applications.
This thesis introduces the preparation of a series of Mg-based thin films with different structures using magnetron sputtering, as well as the systematical investigation of their gaseous and electrochemical hydrogen storage properties under mild conditions. It reviews promising applications of Mg-based thin films in smart windows, hydrogen sensors and Ni-MH batteries, while also providing significant insights into research conducted on Mg-based hydrogen storage materials, especially the Mg-based films. Moreover, the unique experimental procedures and methods (including electric resistance, optical transmittance and electrochemical methods) used in this thesis will serve as a valuable reference for researchers in the field of Mg-based hydrogen storage films.
Polyoxometalates are anionic metal-oxo nanoclusters, which constitute a unique class of compounds owing to their rich solution equilibria and their unique compositional, electronic, reactive, and structural diversity. This book reviews metal-oxide cluster chemistry by covering topics ranging from fundamental aspects (i.e., structure, properties, self-assembly processes, derivatization) to functional materials that incorporate these molecular units, as well as their applications in the fields of current socioeconomic interest, such as energy storage systems, catalysis, molecular electronics, and biomedicine. Edited by prominent researchers in the field of polymer and polyoxometalate chemistries, the book compiles contributions from some of the most distinguished and promising scientists worldwide in such a way that it will appeal to a general readership involved in research areas related to chemistry and materials science.
This book cuts across the divisions of organic, inorganic, and physical chemistry. It describes new methods for creating -conjugated porphyrin oligomers with precisely defined sequences of zinc and copper metal cations, and how EPR spectroscopy was used to investigate the dipolar and exchange coupling between the paramagnetic copper(II) centres. Porphyrins are a group of heterocyclic macrocycle organic compounds that play an important role in our everyday life and can for example be found in blood where they form a red complex with iron (haem). Various metallic elements can be inserted into a porphyrin and changing the coordinated metal is an excellent way to influence the chemical and physical properties of these molecules. Focusing on 3 metals - zinc, magnesium and copper - the author established new methods for creating -conjugated porphyrin oligomers and lastly presents the synthesis and investigation of two novel porphyrin nanoballs. Giving the template-directed strategy the author developed for constructing these molecules, this work could provide access to other related nano-cages.
Fluorine: A Paradoxical Element, Volume Five, deals with the link between fluorine, humanity and the environment. It is divided into three main sections, including i) The history and developmental stages of fluorinated products, ii) Awareness of its importance in our environment, and iii) Recent contributions of fluoride products in medicine, pharmacy and our daily lives. Made engaging through interesting figures and accessible language, and written by a leading expert, Professor Tressaud, the book supports the work of scientists working in materials, toxicology and environmental science. It complements the author's edited series, Progress in Fluorine Science, covering recent advances.
Potentiometric Water Analysis Second Edition Derek Midgley and Kenneth Torrance, National Power plc, Technology and Environmental Centre, Leatherhead, Surrey, UK This volume is a thoroughly revised and updated version of the very successful first edition. It provides, in one single volume, a comprehensive survey of the theoretical and practical aspects of potentiometry and ion-selective electrodes applied to the analysis of water. The first part of the book describes the basic theory of electrodes, the statistical treatment of results, titrimetric methods and general guidance on procedures. Useful information is given on the types of electrodes available, together with the apparatus required for laboratory and industrial use. For this second edition, the authors include details on microprocessor-based instruments, new electrodes and techniques that have recently been developed, as well as updating the variations on established procedures and their performance characteristics. The second part of the book gives detailed analytical methods for identifying a variety of determinands. Worked examples with discussions of sources of error and likely accuracy are also included. The book is designed to give sufficiently detailed procedures so that the reader can use the methods without recourse to the primary literature. With its emphasis on the practical aspects of potentiometric water analysis, this book will be a valuable tool for analysts working in the field.
Aluminum, bound almost exclusively to oxygen in various combinations, is the most abundant metal in the earth's crust and, therefore, of great commercial potential. Once methods were developed (in the 1880's) to free useable quantities of the element from oxygen, applications for the element began developing rapidly. This growth has resulted in the ubiquity of the metal in today's world. Therefore it can be found intentionally introduced in many products in direct contact with human beings. It is commonly known that soluble forms of aluminum aretoxic to living organisms. However, aluminum is not known to be bioavailable under everyday conditions. In fact, the solubility product of common aluminum compounds, such as AI(OH)3 is so low as to make it essentially unavailable. This volume of Structure and Bonding seeks to provide in one source, a resource where the basic science related to aluminum toxicity may be obtained. It should be stressed that this volume is not intended to be a warning to avoid contact with aluminum. Living organisms have adequate defenses to prevent aluminum toxicity under normal conditions. Rather the volume was created to simply provide an understanding of the biological effects of aluminum. As such, the present volume should be considered in the context of the companion volumes in this three part series of Structure and Bonding. The first volume was devoted to fundamental developments in group 13 chemistry.
Direct Synthesis of Metal Complexes provides in-depth coverage of the direct synthesis of coordination and organometallic compounds. The work is primarily organized by methods, but also covers highly relevant complexes, such as metal-polymer coordination compounds. This updated reference discusses recent developments in cryosynthesis, electrosynthesis, and tribosynthesis (popular as it doesn't require organic solvents), with special attention paid to 'greener' methodologies and approaches. Additionally, the book describes physical methods of zero-valent metal interaction with organic matter, including sputtering, ultrasonic treatment and synthesis in ionic liquids. The book presents completely new content as a follow-up to the 1999 Elsevier Science publication Direct Synthesis of Coordination and Organometallic Compounds that was edited by Dr. Garnovskii and Dr. Kharisov.
Metal-Oxygen Clusters is the first book, providing an overview of the surface chemistry and catalytic properties of heteropoly oxometalates. After a brief look at the early knowledge of heteropoly oxometalates, the book discusses the synthesis, characterization, structure, bulk properties and stability of these materials. The remainder and the largest portion of the book explores the properties of these solids as catalysts in acid-catalyzed and oxidation processes in supported or unsupported forms. The book provides an up-to-date review of the methods for synthesizing heteropoly oxometalates of Keggin structure, techniques from spectroscopic through electrochemical to elemental analysis for their characterization and the current information on their structure, bulk properties and their stabilities at high temperatures and under acid and alkaline conditions. The book discusses the materials employed as supports for the title solid and the results of the examination of the supported materials. Methods for the identification of the nature and source of the two catalytic functions, the acidic and oxidative properties, of the heteropoly oxometalates are reviewed and discussed. The use of both the supported and unsupported heteropoly oxometalates as catalysts in acidity-requisite processes ranging from methanol conversion to hydrocarbons to ring-expansion and contraction processes and in oxidation processes from methane cyclohexane are described and related to the aforementioned properties.
Biological inorganic chemistry is a field of research at the interface of inorganic and biological chemistry. The rapidly developing insights into the role of metals in biological systems has far-reaching implications not only for biological science but also for related disciplines, ranging from molecular medicine to the environment. In each volume the reader, whether engaged in chemistry, biochemistry, biology or molecular medicine, receives a comprehensive summary and critical overview of a topic of hight current interest written by leading international experts.
A stand-alone, monograph present results on mechanochemical synthesis of nanostructured composite materials on the base of inorganic and organic components The book summarizes and systematizes the results of a fundamentally new complex approach to the creation of composite polymer-inorganic systems by mechanochemical treatment, both as a result of the traditional approach with the use of dynamic mills (mechanical reactors) and ultrasonic action on powder mixtures In addition, the book will present a chapter that will focus on the method of mechanochemical preparation of materials for high-energy systems, which are the most promising, since it allows the most productive management of the formation of new structural compositions that increase the energy intensity of the system.
The Periodic Table of the Elements remains a living, growing document that attempts to map out all of the most primal matter known to humankind. This book preserves our current knowledge and understanding of the Periodic Table of the Elements as it exists at this specific moment in time. The heavy elements have recently been verified and named, and thus complete the seventh row of the Periodic Table, with oganesson being the name of the final element, which had formerly been known as Element 118 or Eka-radon. One can say honestly that it is a rare moment in time when a row of the Periodic Table of the Elements is completed.
This is the very first book that offers an up-to-date and comprehensive overview on deuteride. It not only includes the concept, existing forms, key characteristics, but also reviews the preparation and characterization technologies and the latest research developments of deuteride. The special properties such as the nuclear properties, isotropic and neutron effect, poisonousness, radioactivity, volume expansion are systematically discussed to build up the sound understanding of the materials. In particular, this work reviews a number of commercial and scientific uses of the materials including nuclear reactors, NMR spectroscopy and medicines. Researchers and industrial professionals in medicine, chemistry, biochemistry, environmental sciences and defense sciences will benefit from this work.
A complete guide to the most important reduction method in organic synthesis The most comprehensive reference in the field, Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis provides synthetic chemists and chemical engineers in fine chemicals and pharmaceuticals with detailed experimental guidelines for heterogeneous catalytic hydrogenation. Organized by functional groups for ready reference and featuring detailed examples of hundreds of reactions, this handbook covers hydrogenations of alkenes, alkynes, aldehydes and ketones, nitriles, imines, nitro and nitroso compounds, carboxylic acids and esters, and aromatic and heterocyclic compounds. In addition, coverage includes the preparation of amines by reductive alkylation and the hydrogenolysis of a variety of compounds. Examples of hydrogenation of functional groups and reaction pathways are illustrated with numerous equations and schemes. Practitioners will appreciate the plenitude of experimental details given for most of the reactions selected, including amounts of reagents and catalysts, reaction temperatures, hydrogen pressures, and reaction times. They will also find helpful the more than one hundred tables included throughout the book detailing the effects of key factors governing rate and selectivity, such as compound structure, the nature of catalysts and supports, and the nature of solvents. Researchers will benefit from the introductory chapters covering an array of hydrogenation catalysts, including nickel, cobalt, copper, iron, platinum group metals, rhenium, and other oxide and sulfide catalysts, as well as reactors and reaction conditions.
This book discusses the extraction, purification, modification, and processing of biobased materials and their various industrial applications, across biomedical, pharmaceutical, construction, and other industries. It includes contributions from experts on hybrid biopolymers and bio-composites, bioactive and biodegradable materials, bio-inert polymers, natural polymers and composites, and metallic natural materials. Therefore, this encyclopedia is a useful reference for scientists, academicians, research scholars, and technologists. Major challenges of biobased materials are their efficient development, cost-effective, and green & environment friendly production/applications. This encyclopedia answers these challenges to professionals and scientists for proper utilization of biobased materials. It presents the recent practices of biobased materials technology in different scientific and engineering domains. It helps the bounded industrial outcomes to reach the general readership of different domains. This encyclopedia bridges the technological gaps between the industrial and academic professionals and the novice young students/scholars. The interdisciplinarity of this encyclopedia makes it unique for a wide readership. The topic of biobased materials is currently popular in the scientific community, working in such following areas as Recycled materials, Renewable materials, Materials for efficiency, Materials for waste treatment, Materials for reduction of environmental load, Materials for easy disposal or recycle, Hazardous free materials, Materials for reducing human health impact, Materials for energy efficiency, Materials for green energy, etc. This is a relatively hot topic in materials science and has strong demands for energy, material and money savings, as well as heavy contamination problems, despite that the area of biobased materials belongs to most important fields of modern science & technology, no important encyclopedias have been published in the area of "biobased materials"
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
This timely and unique publication is designed for graduate students and researchers in inorganic and materials chemistry and covers bonding models and applications of symmetry concepts to chemical systems. The book discusses the quantum mechanical basis for molecular orbital concepts, the connections between molecular orbitals and localized views of bonding, group theory, bonding models for a variety of compounds, and the extension of these ideas to solid state materials in band theory. Unlike other books, the concepts are made tangible to the readers by guiding them through their implementation in MATLAB functions. No background in MATLAB or computer programming is needed; the book will provide the necessary skills. Key Features Visualization of the Postulates of Quantum Mechanics to build conceptual understanding MATLAB functions for rendering molecular geometries and orbitals Do-it-yourself approach to building a molecular orbital and band theory program Introduction to Group Theory harnessing the 3D graphing capabilities of MATLAB Online access to a growing collection of applications of the core material and other appendices Bonding through Code is ideal for first-year graduate students and advanced undergraduates in chemistry, materials science, and physics. Researchers wishing to gain new tools for theoretical analysis or deepen their understanding of bonding phenomena can also benefit from this text. About the Author Daniel Fredrickson is a Professor in the Department of Chemistry at the University of Wisconsin-Madison, where his research group focuses on understanding and harnessing the structural chemistry of intermetallic phases using a combination of theory and experiment. His interests in crystals, structure, and bonding can be traced to his undergraduate research at the University of Washington (B.S. in Biochemistry, 2000) with Prof. Bart Kahr, his Ph.D. studies at Cornell University (2000-2005) with Profs. Stephen Lee and Roald Hoffmann, and his post-doctoral work with Prof. Sven Lidin at Stockholm University (2005-2008). As part of his teaching at UW-Madison since 2009, he has worked to enhance his department's graduate course, Physical Inorganic Chemistry I: Symmetry and Bonding, through the incorporation of new material and the development of computer-based exercises.
Organic chemistry research has moved rapidly toward synthesis and medicinal application of nitrogen-containing compounds such as triazenes, triazines, and hydroxytriazenes due to their excellent biological activities. Many of them are presently in clinical trials. Triazene compounds have excellent medicinal properties and limited toxicity. Hydroxytriazenes are excellent chelating agents for transition metals. Newer studies show very promising biological and medicinal applications of these classes of compounds. Hydroxytriazenes and Triazenes: The Versatile Framework, Synthesis, and Medicinal Applications highlights synthetic methods, recent advances, and potential applications of triazines, triazenes, and hydroxytriazenes. This book includes holistic information on synthetic methods for novel compounds based on this moiety, up-to-date information on the how and why of their diverse or even multitargeted medicinal application, and future state of the art of both aspects. Other features include: Highlights recent advances and diverse possible applications of biological functions Covers the chemistry of triazine, triazene, and hydroxytriazene systems On the basis of in silico predictions, the book highlights synthetic methods and their applications A valuable source of information for those actively engaged in medicinal chemistry, drug discovery, and synthetic organic chemistry
Leading investigators in their fields present a broad perspective of recent major research trends in synthetic fluorine chemistry. Coverage includes: various aspects of organic and inorganic fluorine chemistry, fluorination methods, organometallic fluorine chemistry and its use in synthesis, the synthesis of perfluoropolyethers (an extraordinary class of new fluorinated compounds) and much more.
Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents. |
![]() ![]() You may like...
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,816
Discovery Miles 28 160
Epitaxial Growth of Complex Metal Oxides
Gertjan Koster, Mark Huijben, …
Paperback
R6,406
Discovery Miles 64 060
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R6,114
Discovery Miles 61 140
Comprehensive Inorganic Chemistry III
J. Reedijk, Kenneth R. Poeppelmeier
Hardcover
R99,268
Discovery Miles 992 680
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R181,402
Discovery Miles 1 814 020
|