![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Inorganic chemistry
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
The precipitation of metal oxides from aqueous solutions creates nanoparticles with interesting solid state properties, thus building a bridge between solution chemistry and solid state chemistry. This book is the first monograph to deal with the formation of metal oxides from aqueous solutions with emphasis on the formation and physical chemistry of nanoparticles. Metal Oxide Chemistry and Synthesis: From Solution to Solid State
Part II is devoted to the surface chemistry of oxide particles. The basic concepts relating to the reactivity of the oxide-solution interface are introduced and applied to various adsorption phenomena, such as aggregation, stability of particle size against ripening, etc. These properties are exploited for the synthesis of nanomaterials for a broad range of applictions such as ceramic powders, catalysts and nanocomposites. This will also be of interest to those wishing to understand geochemical and some biological processes. As well as being invaluable to researchers and postgraduate students of inorganic chemistry, this book will also be appreciated by solid-state chemists, materials scientists and colloid chemists with an interest in metal oxides.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The use of silver as an antibacterial agent has been known for thousands of years. This effect can be amplified by simply reducing the size of silver particles to the nanoscale, with an added advantage of reduction in cost and toxicity. Application of silver nanoparticles to textiles can bring considerable advantages, especially for materials that cannot be washed daily or medical support materials. This book describes a novel synthesis method that the author calls "in situ," in which these nanoparticles are obtained directly on materials. The method is simple and easy to apply and can also be considered green because the reducing agent involved is ascorbic acid, commonly known as vitamin C. It neither requires special modifications in the industrial equipment nor special pressure or temperature conditions. It can be used to grow other metals or metal oxides on a material. The book showcases studies carried out on silver nanoparticles by the author over several years, not only in terms of the synthesis but also the morphological characterization of the substrate to which they were applied. It exhibits SEM images displaying the homogeneity of the silver coating, highlighting that sometimes the simplest way is the best way.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
This book discusses the unique properties of superfluid phases of 3He, the condensed matter with the outmost broken symmetry, which combine in a surprising way the properties of ordered magnets, liquid crystals and superfluids. The complicated vacuum state of these phases with a large number of fermionic and bosonic quasiparticles and topological objects remains the vacuum in modern quantum field theories. Some of the objects and physical phenomena in 3He have strong analogy with the neutrino, W-bosons, weak interactions, gravity, chiral anomaly, Quantum Hall Effect and fractional statistics. As an example of topological objects, the quantized vortices in 3He phases are discussed in detail, including singular and continuous vortices, half-quantum vortices, broken symmetry in the vortex core and phase transitions between the vortex states with different symmetry and topology.
Volume 44, devoted solely to the vital research areas concerning the biogeochemistry of metals and their transport in the environment and availability to living systems, offers 9 timely and authoritative chapters on these fascinating topics by 19 internationally recognized experts.
This book provides insights into the mechanisms of primary carbonization, discusses changes in the thermal-mechanical properties of carbon/carbon composites due to stress effects. It describes factors that result in the acceleration of the graphitization process.
Over the last decade, increased attention to reaction dynamics, combined with the intensive application of computers in chemical studies, mathematical modeling of chemical processes, and mechanistic studies has brought graph theory to the forefront of research. It offers an advanced and powerful formalism for the description of chemical reactions and their intrinsic reaction mechanisms. Chemical Reaction Networks: A Graph-Theoretical Approach elegantly reviews and expands upon graph theory as applied to mechanistic theory, chemical kinetics, and catalysis. The authors explore various graph-theoretical approaches to canonical representation, numbering, and coding of elementary steps and chemical reaction mechanisms, the analysis of their topological structure, the complexity estimation, and classification of reaction mechanisms. They discuss topologically distinctive features of multiroute catalytic and noncatalytic and chain reactions involving metal complexes. With it's careful balance of clear language and mathematical rigor, the presentation of the authors' significant original work, and emphasis on practical applications and examples, Chemical Reaction Networks: A Graph Theoretical Approach is both an outstanding reference and valuable tool for chemical research.
Presenting the fundamental topics in glass science and technology, this concise introduction includes glass formation, crystallization, and phase separation. Glass structure models, with emphasis on the oxygen balance method, are presented in detail. Several chapters discuss the viscosity, density, thermal expansion, and mechanical properties of glasses as well as their optical and magnetic behavior and the diffusion of ions, atoms, and molecules and their effect on electrical conductivity, chemical durability, and other related behavior. In addition to the effects of atomic structure on the properties of glasses, the effects of phase separation, crystallization, and water content, which are neglected in most texts, are discussed extensively. Glass technology is addressed in chapters dealing with the raw materials for producing glasses, batch calculations, and the melting and fining processes. The compositions, properties, and production of commercial glasses are also presented. A chapter is devoted to the use of thermal analysis in the study of glasses, including their crystallization behavior. This expanded, third edition, includes new chapters on doped vitreous silica and the, often overlooked, role of halides on glass formation and properties. In addition, solutions to all of the exercises at the ends of chapters are included for the first time in this edition. This introductory text is ideal for undergraduates in materials science, ceramics, or inorganic chemistry. It will also be useful to the graduate student, engineer, or scientist seeking basic knowledge of the formation, properties, and production of glass in support of their work.
Metals in pharmaceuticals have played an increasingly important role in medicine over the last century, particularly in cancer therapy and diagnostic imaging methods. Medicinal Applications of Coordination Chemistry focuses on the role that transition metals play in clinical applications. Medicinal Applications of Coordination Chemistry begins with a brief historical review and an introduction to the chemistry of d- and f- block metals. Subsequent sections discuss metallodrugs for a number of different applications, the design of new drugs and the relationship between structure and function. Key sections include diagnostic applications of metal compounds in anatomical and functional imaging, and therapeutic applications of metals compounds. This book is ideal for researchers in academia and industry and comes complete with examples of real life applications.
Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes is devoted soley to the vital research area on molybdenum and tungsten and their role in biology. It offers a comprehensive and timely account of this fascinating topic by 40 distinguished international authorities. Topics include: transport, homeostasis, regulation and binding of molybdate and tungstate to proteins, crystallographic characterization, coordination of complexes, and biosynthesis.
Boron has all the best tunes. That may well be the first impression of the Group 13 elements. The chemical literature fosters the impression not only in the primary journals, but also in asteady outflowofbooks focussing more or less closely on boron and its compounds. The same preoccupation with boron is apparent in the coverage received by the Group 13 elements in the comprehensive and regularly updated volume of the Gmelin Handbook. Yet such an imbalance cannot be explained by any inherent lack ofvariety, interest or consequence in the 'heavier elements. Aluminium is the most abundant metal in the earth's crust; in the industrialised world the metal is second only to iron in its usage, and its compounds can justifiably be said to touch our lives daily - to the potential detriment of those and other lives, some would argue. From being chemical curios, gallium and indium have now gained considerably prominence as sources of compound semiconductors like gallium arsenide and indium antimonide. Nor is there any want ofincident in the chemistriesofthe heavier Group 13 elements. In their redox, coordination and structural properties, there is to be found music indeed, notable not always for its harmony but invariably for its richness and variety. Thisbook seeks to redress the balance with a definitive, wide-rangingand up-to-date review of the chemistry of the Group 13 metals aluminium, gallium, indium and thallium.
As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes. In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland's Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev's predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery of scandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev's periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements. Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin's theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom. This first volume provides chemists with an account of the historical development of the Periodic Table and an overview of how the Periodic Table has evolved over the last 150 years. It also illustrates how it has guided the research programmes of some distinguished chemists.
Transition metal carbonyl clusters (TMCCs) continue to inspire great interest in chemical research, as much for their fascinating structures as for potential industrial applications conferred by their unique properties. This highly accessible book introduces the bonding, structure, spectroscopic properties, and characterization of clusters, and then explores their synthesis, reactivity, reaction mechanisms and use in organic synthesis and catalysis. Transition Metal Carbonyl Cluster Chemistry describes models and rules that correlate cluster structure with electron count, which are then applied in worked examples. Subsequent chapters explain how bonding relates to molecular structure, demonstrate the use of spectroscopic techniques such as NMR, IR and MS in cluster chemistry, and outline the factors contributing to the stability, dynamics and reactivity of clusters. The second part of this book discusses the synthesis and applications of TMCCs. It emphasizes the differences between the reactivities of clusters vs. mononuclear metal complexes, contingent to the availability of multiple-bonding sites and heterosite reactivity. The final chapters discuss reactions in which clusters act as homogeneous catalysts; including discussion on the use of solid and biphasic liquid-liquid supported clusters in heterogeneous catalysts. A useful reference for those commencing further research or post-graduate study on metal carbonyl clusters and advanced organometallic chemistry, this book is also a cornerstone addition to academic and libraries as well as private collections.
Fundamental QSARs for Metal Ions describes the basic and essential applications of quantitative structure-activity relationships (QSARs) for regulatory or industrial scientists who need to predict metal ion bioactivity. It includes 194 QSARs that have been used to predict metal ion toxicity and 86 QSARs that have been used to predict metal ion bioconcentration, biosorption, and binding. It is an excellent sourcebook for academic, industrial, and government scientists and policy makers, and provides a wealth of information on the biological and chemical activities of metal ions as they impact health and the environment. Fundamental QSARs for Metal Ions was designed for regulatory and regulated organizations that need to use QSARs to predict metal ion bioactivity, as they now do for organic chemicals. It has the potential to eliminate resources to test the toxicity of metal ions or to promulgate regulations that require toxicity testing of metal ions because the book illustrates how to construct QSARs to predict metal ion toxicity. In addition, the book: Provides a historical perspective and introduction to developing QSARs for metal ions Explains the electronic structures and atomic parameters of metals essential to understanding differences in chemical properties that influence cation toxicity, bioconcentration, biosorption, and binding Describes the chemical properties of metals that are used to develop QSARs for metal ions Illustrates the descriptors needed to develop metal ion-ligand binding QSARs Discusses 280 QSARs for metal ions Explains the differences between QSARs for metal ions and Biotic Ligand Models Lists the regulatory limits of metals and provides examples of regulatory applications Illustrates how to construct QSARs for metal ions Dr. John D. Walker is the winner of the 2013 SETAC Government Service Award.
Cellulose is the most abundant organic polymer on earth. In
solution, cellulose derivatives can form liquid crystals which take
on characteristics of the solid state with unique optical and
physico-mechanical properties. The author presents an overview of
modern developments in the physical chemistry of solutions of
cellulose and its derivatives. Physical Chemistry of Non-aqueous
Solutions of Cellulose and Its Derivatives discusses:
First to review nanoscale self-assembly employing such a wide variety of methods Covers a wide variety physical, chemical and biological systems, phenomena, and applications First overviews of nanotube biotechnology and bimetallic nanoparticles
The Chemistry and Physics of Carbon series presents advances in carbon research and development and comprehensive reviews on the state of the science in all these areas. Building on the tradition of its highly acclaimed predecessors, Volume 28 of this series presents authoritative, interdisciplinary coverage of contemporary topics. With contributions by leading international experts and more than 1300 references, this indispensable volume discusses the structure of glassy carbon, carbon fibers, carbon black (soot), chars, spherulitic graphite in cast iron and naturally occurring forms of carbon; and structural similarities with fullerenes, carbon nanotubes, and carbon nanoparticles.
Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions represents the sixth and final book by the late Brian Wybourne, an accomplished pioneer in the spectroscopy of rare earth ions, and Lidia Smentek, a leading theoretical physicist in the field. The book provides a definitive and up-to-date theoretical description of spectroscopic properties of lanthanides doped in various materials. The book integrates computer-assisted calculations developed since Wybourne's classic publication on the topic. It contains useful Maple (TM) routines, discussions, and new aspects of the theory of f-electron systems. Establishing a unified basis for understanding state-of-the-art applications and techniques used in the field, the book reviews fundamentals based on Wybourne's graduate lectures, which include the theory of nuclei, the theory of angular momentum, Racah algebra, and effective tensor operators. It then describes magnetic and hyperfine interactions and their impact on the energy structure and transition amplitudes of the lanthanide ions. The text culminates with a relativistic description of f f electric and magnetic dipole transitions, covering sensitized luminescence and a new parametrization scheme of f-spectra. Optical Spectroscopy of Lanthanides enables scientists to construct accurate and reliable theoretical models to elucidate lanthanides and their properties. This text is ideal for exploring a range of lanthanide applications including electronic data storage, lasers, superconductors, medicine, nuclear engineering, and nanomaterials.
Presents the latest developments on the interaction of metal complexes with nucleic acids, the building blocks of life. Bioinorganic chemistry is a highly interdisciplinary area of research and is of great interest to scientists working in the fields of coordination chemistry, biochemistry, supramolecular chemistry, nanotechnology, computational chemistry, and inorganic chemistry in general. Includes the latest research in DNA recognition by supramolecular metal complexes. Describes the applications of this exciting area of research in metal-nucleic acid chemistry.
The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The first part of the book examines the crystal and electronic structure, stoichiometry and composition, redox properties, acid-base character, and cation valence states, as well as new approaches to the preparation of ordered TMO with extended structure of texturally defined systems. The second part compiles some practical aspects of TMO applications in materials science, chemical sensing, analytical chemistry, solid-state chemistry, microelectronics, nanotechnology, environmental decontamination, and fuel cells. The book examines many types of reactions - such as dehydration, reduction, selective oxidations, olefin metathesis, VOC removal, photo- and electrocatalysis, and water splitting - to elucidate how chemical composition and optical, magnetic, and structural properties of oxides affect their surface reactivity in catalysis. Drawing insight from leading international experts, Metal Oxides: Chemistry and Applications is a comprehensive and interdisciplinary reference for researchers that may also be used by newcomers as a guide to the field.
The aim of this series is to provide authoritative reviews in the
rapidly expanding area of bioinorganic chemistry. The series will
present "state of the art" reviews covering the whole field of
bioinorganic chemistry.
Energy and climate change are two of the most critical issues nowadays. These two topics are also correlated to each other. Fossil fuels are the main energy supplies that have been used in modern history since the industrial revolution. The impact of CO2 emission has been a major concern for its effect on global warming and other consequences. In addition, fossil fuels are not unlimited. Due to the increasing demands for energy supplies, alternative renewable, sustainable, environmentally friendly energy resources are desirable.Solar energy is an unlimited, clean, and renewable energy source, which can be considered to replace the energy supply of fossil fuel. The silicon solar cell is one of the dominant photovoltaic technologies currently, which converting sunlight directly into electric power with around 20% efficiency. This technique was been widely used in mainstream solar energy applications for decades, though the relatively energy-demanding production process remained with challenges to be resolved.Recently, emerging photovoltaic technologies such as organometal halide hybrid perovskite solar cell has attracted tremendous attention due to their promising power conversion efficiencies (over 22%) and ease of fabrication. Their progress roadmap is unprecedented in photovoltaic history from the material development and efficiency advancement perspective. Beyond the rapid progress achieved in the last few years, it is expected that this novel technology would make an impact on the future solar cell market providing long-term stability and Pb content issues are addressed. These challenges rely on a better understanding of materials and device function principles. The scope of this book is to provide a collection on the recent investigations from fundamental process, materials development to device optimization for perovskite solar cells. |
![]() ![]() You may like...
The How Not To Die Cookbook - Over 100…
Michael Greger
Paperback
![]()
|