![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
This book explores how structure impacts the dynamics of organic molecules in an extensive and impressive range of femtosecond time-resolved experiments that are combined with state-of-the-art theoretical approaches. It explores an area of molecular dynamics that remains largely uncharted and provides an extraordinary overview, along with novel insights into the concept of the dynamophore - the functional group of ultrafast science. Divided into four parts, this book outlines both experimental and computational studies on the VUV photoinduced dynamics of four cyclic ketones and one linear ketone, the ring-opening and dissociative dynamics of cyclopropane, and the potential ultrafast intersystem crossing in three methylated benzene derivatives. Model systems for the disulfide bond and the peptide bond, both of which are related to the structure of proteins, are also investigated. This highly informative and carefully presented book offers a wealth of scientific insights for all scholars with an interest in molecular dynamics.
Descriptive Inorganic Chemistry, Second Edition, covers the synthesis, reactions, and properties of elements and inorganic compounds for courses in descriptive inorganic chemistry. This updated version includes expanded coverage of chemical bonding and enhanced treatment of Buckminster Fullerenes, and incorporates new industrial applications matched to key topics in the text. It is suitable for the one-semester (ACS-recommended) course or as a supplement in general chemistry courses. Ideal for majors and non-majors, the book incorporates rich graphs and diagrams to enhance the content and maximize learning.
The book is the first thorough study of the role of phosphorus chemistry in the origin of life. This book starts with depiction of the phosphorus role in life creation and evolution. Then it outlines in vital processes how different phosphorus-containing compounds participate as biomarker in life evolution. Written by renowned scientists, it is suitable for researchers and students in organic phosphorus chemistry and biochemistry.
A detailed treatment of information relating to fluid-oxide interfaces. It outlines methods for quantifying adsorption and desorption of polymeric and non-polymeric solutes at the gas- and solution-oxide interfaces. It also analyzes novel properties of oxide membranes and the synthesis and dissolution of oxide solids.
Written by distinguished researchers in carbon, the long-running Chemistry and Physics of Carbon series provides a comprehensive and critical overview of carbon in terms of molecular structure, intermolecular relationships, bulk and surface properties, and their behavior in an amazing variety of current and emerging applications, ranging from nanotechnology to environmental remediation. Volume 30 not only retains the high-quality content and reputation of previous volumes, but also complements them with reliable and timely coverage of the latest advances in the field. The first chapters analyze progressive approaches to controlling more precisely the structure, morphology, and surface properties of novel activated carbons. They cover methods using activating agents such as alkaline hydroxides as well as endo- and exotemplates made from zeolites, silica, and colloidal crystals. The third chapter examines techniques for characterizing carbon surface chemistry, including electrochemical, spectroscopic, and chromatographic methods. The fourth and final chapter compares the virtues of exfoliated graphite, carbonized fir fibers, carbon fiber felt, and charcoals in solving oil spill problems, a matter of increasing environmental concern. Emphasizing key experimental results, practical aspects, and cutting-edge applications in every chapter, Volume 30 is a vital resource for those developing new technologies such as drug delivery, adsorbents for oil/chemical spills, materials processing, high-performance nanocarbons, and energy storage and conversion devices, including lithium ion batteries, supercapacitors, and fuel cells.
Organic chemistry research has moved rapidly toward synthesis and medicinal application of nitrogen-containing compounds such as triazenes, triazines, and hydroxytriazenes due to their excellent biological activities. Many of them are presently in clinical trials. Triazene compounds have excellent medicinal properties and limited toxicity. Hydroxytriazenes are excellent chelating agents for transition metals. Newer studies show very promising biological and medicinal applications of these classes of compounds. Hydroxytriazenes and Triazenes: The Versatile Framework, Synthesis, and Medicinal Applications highlights synthetic methods, recent advances, and potential applications of triazines, triazenes, and hydroxytriazenes. This book includes holistic information on synthetic methods for novel compounds based on this moiety, up-to-date information on the how and why of their diverse or even multitargeted medicinal application, and future state of the art of both aspects. Other features include: Highlights recent advances and diverse possible applications of biological functions Covers the chemistry of triazine, triazene, and hydroxytriazene systems On the basis of in silico predictions, the book highlights synthetic methods and their applications A valuable source of information for those actively engaged in medicinal chemistry, drug discovery, and synthetic organic chemistry
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
A dangerous byproduct of industrial progress is often an increase of pollutants discharged into the environment. These pollutants are often harmful to plants and animals, including humans. They also damage buildings and architectural and cultural monuments. This handbook describes many of the important physico-chemical properties of inorganic and organic substances found in industrial wastes and describes their toxic effects on humans.
High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of organic and inorganic pollutants from aqueous solutions. Activated Carbon Adsorption introduces the parameters and mechanisms involved in the activated carbon adsorption of organic and inorganic compounds. This text brings together the most significant research on surface structure and processes, adsorption theories and isotherm equations, and applications from the latest literature on carbon adsorption. The book clearly explains the surface-related interactions of activated carbons, their energetics, and the applicability of adsorption isotherm equations and their deviation from adsorption data. It then explores numerous applications in a wide range of areas, such as nuclear technology, vacuum technology, food technology, pharmaceuticals and medicine, gas storage, oil refining, and environmental remediation. Topics include: oils and fats, molecular sieves, refining of liquid fuels, pesticides, dyes, drugs, and toxins. Three chapters are dedicated to environmental applications, including the adsorption of halogenated organic compounds and the removal of hazardous gases and vapors, organo-sulphur compounds, and other inorganic compounds from wastewater and groundwater. Activated Carbon Adsorption presents a complete survey of the growing number of state-of-the-art applications supported by a compilation of the latest perspectives in research concerning carbon surfaces and their adsorption processes from aqueous solutions. Its unified approach promotes further research towards improving and developing newer activated carbon adsorbents and processes for the efficient removal of pollutants from drinking water and industrial effluents.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
'This is an an absolutely wonderful book that is full of gems about the elements and the periodic table ... All in all, the book is highly recommended to philosophers of chemistry. As philosophers we have a natural tendency to concentrate on generalities and not to get too involved in the specifics and the details. Above all else, this new book reminds us that such an approach needs to be tempered by a detailed knowledge of the exceptions and features that go against the simplified generalities which we so cherish.' [Read Full Review]Eric ScerriFoundations of Chemistry'Many questions are dealt with in a clearly written way in this stimulating and innovative book. The reader will quickly become interested in the subject and will be taken on tour through this Periodic Table in a very readable way, both for students and teachers ... The number of illustrations is good, and clear. This book is indeed unique and quite thought-provoking ... This book is highly recommended for students, teachers, researchers and not only chemists! Geologists, biochemist and also physicists will find it very interesting to read.' [Read Full Review]Chemistry InternationalThat fossilized chart on every classroom wall - isn't that The Periodic Table? Isn't that what Mendeleev devised about a century ago? No and No. There are many ways of organizing the chemical elements, some of which are thought-provoking, and which reveal philosophical challenges. Where does hydrogen 'belong'? Can an element occupy more than one location on the chart? Which are the Group 3 elements? Is aluminum in the wrong place? Why is silver(I) like thallium(I)? Why is vanadium like molybdenum? Why does gold form an auride ion like a halide ion? Does an atom 'know' if it is a non-metal or metal? Which elements are the 'metalloids'? Which are the triels? So many questions! In this stimulating and innovative book, the Reader will be taken on a voyage from the past to the present to the future of the Periodic Table. This book is unique. This book is readable. This book is thought-provoking. It is a multi-dimensional examination of patterns and trends among the chemical elements. Every reader will discover something about the chemical elements which will provoke thought and a new appreciation as to how the elements relate together.
This book reviews some of the latest developments in the field of water treatment using multi-functional chitosan-based materials. It covers the production of chitosan beads and membranes from chitosan powder, as well as modification techniques for enhancing the material for commercial and industrial purposes. The book summarizes the results of experimental adsorption/desorption studies for elucidating the underlying reaction mechanism of heavy-metal removal from wastewater, presenting an advanced overview of an array of characterization techniques such as Fourier-transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction, and scanning electron microscopy. Additionally, it features a look at the development and application of specialized engineering software and image analysis for modelling the kinetics of adsorption. This book is ideal for scientists and engineers working in the broader field of environmental materials science. It is all well suited for chemists, as well as industrial and civil engineers, interested in wastewater treatment and mitigation of water pollution
CHEMISTRY STUDENT GUIDES. GUIDED BY STUDENTS Why did the drug thalidomide cause birth defects? What is the chemical difference between sucrose and lactose in your food? Stereochemistry holds the answer and is essential to the understanding of the chemistry of life. Stereochemistry is an important concept that often causes confusion amongst students when they learn it for the first time. Unlike most other areas of chemistry, it requires the chemist to visualise molecules in 3D, which can be difficult. In this book we deal with tricky concepts like conformation and configuration, how to represent them accurately and how to use the correct terms to describe them in both organic and inorganic chemistry. We involved students in the writing process to ensure we deal with areas that you find difficult, in an understandable language. With problems designed to focus on common errors and misconceptions, real life examples, and practical hands-on exercises coupled with visualisation tips, our intention is to give you the tools to become confident in stererochemistry. Complementing mainstream organic textbooks, or self-study, this book is for anyone who has struggled with describing alkenes as E or Z, assigning R and S absolute configurations, drawing Newman projections or chair representations of cyclohexanes, axial chirality, understanding the stereochemistry of octahedral metal complexes and indeed explaining complexities observed in NMR spectra. Chemistry Student Guides are written with current students involved at every stage, guiding the books towards the most challenging aspects of the topic. Student co-authors for Introduction to Stereochemistry are Caroline Akamune, Michael Lloyd and Matthew Taylor.
Chemists increasingly apply electrochemical methods to the investigation of their systems, in particular towards a better understanding of molecular properties, the exploration of chemical reactions involving electron-transfer (ET), the initiation of further reactions by ET, the kinetic measurements, and the establishment of the reaction mechanisms, as well as the synthesis (electrosynthesis) of desired products. Trends in Molecular Electrochemistry presents recent research on procedures in molecular electroactivation and electrocatalysis, bioelectrochemistry, spectroelectrochemistry, and unconventional electrochemistry. The book highlights the state-of-the-art in the application of electrochemistry by taking an interdisciplinary approach to the study of both static and dynamic molecular properties of coordination compounds as well as inorganic, bioinorganic, and organometallic complexes, supramolecular systems, and metalloenzymes. The principles and approaches are often also valid for organic systems, which are illustrated in various contexts.
Boron has all the best tunes. That may well be the first impression of the Group 13 elements. The chemical literature fosters the impression not only in the primary journals, but also in asteady outflowofbooks focussing more or less closely on boron and its compounds. The same preoccupation with boron is apparent in the coverage received by the Group 13 elements in the comprehensive and regularly updated volume of the Gmelin Handbook. Yet such an imbalance cannot be explained by any inherent lack ofvariety, interest or consequence in the 'heavier elements. Aluminium is the most abundant metal in the earth's crust; in the industrialised world the metal is second only to iron in its usage, and its compounds can justifiably be said to touch our lives daily - to the potential detriment of those and other lives, some would argue. From being chemical curios, gallium and indium have now gained considerably prominence as sources of compound semiconductors like gallium arsenide and indium antimonide. Nor is there any want ofincident in the chemistriesofthe heavier Group 13 elements. In their redox, coordination and structural properties, there is to be found music indeed, notable not always for its harmony but invariably for its richness and variety. Thisbook seeks to redress the balance with a definitive, wide-rangingand up-to-date review of the chemistry of the Group 13 metals aluminium, gallium, indium and thallium.
Over the last decade, increased attention to reaction dynamics, combined with the intensive application of computers in chemical studies, mathematical modeling of chemical processes, and mechanistic studies has brought graph theory to the forefront of research. It offers an advanced and powerful formalism for the description of chemical reactions and their intrinsic reaction mechanisms. Chemical Reaction Networks: A Graph-Theoretical Approach elegantly reviews and expands upon graph theory as applied to mechanistic theory, chemical kinetics, and catalysis. The authors explore various graph-theoretical approaches to canonical representation, numbering, and coding of elementary steps and chemical reaction mechanisms, the analysis of their topological structure, the complexity estimation, and classification of reaction mechanisms. They discuss topologically distinctive features of multiroute catalytic and noncatalytic and chain reactions involving metal complexes. With it's careful balance of clear language and mathematical rigor, the presentation of the authors' significant original work, and emphasis on practical applications and examples, Chemical Reaction Networks: A Graph Theoretical Approach is both an outstanding reference and valuable tool for chemical research.
This book provides insights into the mechanisms of primary carbonization, discusses changes in the thermal-mechanical properties of carbon/carbon composites due to stress effects. It describes factors that result in the acceleration of the graphitization process.
First to review nanoscale self-assembly employing such a wide variety of methods Covers a wide variety physical, chemical and biological systems, phenomena, and applications First overviews of nanotube biotechnology and bimetallic nanoparticles
The book presents a succinct summary of methods for the synthesis and biological activities of various different-sized bioactive heterocycles using different green chemistry synthetic methodologies, like microwave, ultrasonic, water mediated, ionic liquids, etc. The book also provides an insight of how green chemistry techniques are specific to the bioactive heterocyclic compounds.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This work provides a how-to approach to the fundamentals, methodologies and dynamics of computational organometallic chemistry, including classical and molecular mechanics (MM), quantum mechanics (QM), and hybrid MM/QM techniques. It demonstrates applications in actinide chemistry, catalysis, main group chemistry, medicine, and organic synthesis.
Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes is devoted soley to the vital research area on molybdenum and tungsten and their role in biology. It offers a comprehensive and timely account of this fascinating topic by 40 distinguished international authorities. Topics include: transport, homeostasis, regulation and binding of molybdate and tungstate to proteins, crystallographic characterization, coordination of complexes, and biosynthesis.
Transition metal carbonyl clusters (TMCCs) continue to inspire great interest in chemical research, as much for their fascinating structures as for potential industrial applications conferred by their unique properties. This highly accessible book introduces the bonding, structure, spectroscopic properties, and characterization of clusters, and then explores their synthesis, reactivity, reaction mechanisms and use in organic synthesis and catalysis. Transition Metal Carbonyl Cluster Chemistry describes models and rules that correlate cluster structure with electron count, which are then applied in worked examples. Subsequent chapters explain how bonding relates to molecular structure, demonstrate the use of spectroscopic techniques such as NMR, IR and MS in cluster chemistry, and outline the factors contributing to the stability, dynamics and reactivity of clusters. The second part of this book discusses the synthesis and applications of TMCCs. It emphasizes the differences between the reactivities of clusters vs. mononuclear metal complexes, contingent to the availability of multiple-bonding sites and heterosite reactivity. The final chapters discuss reactions in which clusters act as homogeneous catalysts; including discussion on the use of solid and biphasic liquid-liquid supported clusters in heterogeneous catalysts. A useful reference for those commencing further research or post-graduate study on metal carbonyl clusters and advanced organometallic chemistry, this book is also a cornerstone addition to academic and libraries as well as private collections. |
You may like...
Juta's Complete Textbook Of Medical…
J.D. Mokoena, M. Chauke, …
Paperback
(2)R1,805 Discovery Miles 18 050
|