![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
Theoretical understanding of electronic properties of metallic alloys is of great importance from both fundamental and technological points of view. This text gives a brief account of the crystal structure of both the pure metals and metals with impurities. Physical effects produced by impurities in metals are described, as is the electronic structure of pure simple and transition metals with special reference to rare-earth metals.
This volume contains the Proceedings of the NATO Advanced Research Workshop on "The Chemical Physics of Fullerenes 10 (and 5) Years Later," which was included in the program of the Enrico Fermi School and held in Varenna, Italy, on June 12-16, 1995. The occasion of the workshop was the lOth birthday of Coo, discovered in molecular beams in the summer of 1985, and the quasi simultaneous 5th anniversary of the synthesis of solid Coo. The motivation, however, was not the celebration of such events, rather the need for a realistic diagnosis of the current situation of fullerene research. The best solution for a constructive discussion was to gather in one place the protagonists of the fullerene adventure from the early discoveries to the present. The NATO Science Committee and the Italian Physical Society have made it possible through their generous financial support and organizational aid, which I wish to acknowledge with special gratitude. Buckminsterfullerene Coo has driven a line of research which, especially after the 1990 discovery, had been considered extremely promising both from the chemistry and material science viewpoints. In spite of this, very recently the funding and support have strongly decreased. Several hopes have been frustrated, and especially that of solid state physicists who hoped to come up with fullerene-based high-Tc superconductors.
I. Electron Transfer Reactions.- 1. Electron Transfer: General and Theoretical.- 1.1. Overview and General Aspects of Reactions in Fluid Media.- 1.2. Electronic Coupling (Ke1).- 1.2.1. The Distance Dependence of Electron Transfer Rates.- 1.2.2. Electric and Magnetic Field Effects on Electronic Coupling and Related Problems of Photoinduced Electron Transfer.- 1.3. The Free-Energy Dependence of Electron Transfer Reactions: The "Inverted Region" Problem.- 1.4. The Effects of Solvent Dynamics.- 1.5. Metal-to-Metal and Ligand-to-Ligand Charge Transfer ("Inter-valence" Transfer).- 2. Redox Reactions between Two Metal Complexes.- 2.1. Introduction.- 2.2. Reactions of Metal Aqua and Oxo Ions.- 2.2.1. Titanium.- 2.2.2. Vanadium and Chromium.- 2.2.3. Iron.- 2.2.4. Molybdenum and Tungsten.- 2.3. Reactions of Metal Ion Complexes.- 2.3.1. Chromium.- 2.3.2. Manganese.- 2.3.3. Iron, Ruthenium, and Osmium.- 2.3.4. Cobalt and Rhodium.- 2.3.5. Nickel, Palladium, and Platinum.- 2.3.6. Copper and Silver.- 2.3.7. Technetium and Rhenium.- 2.3.8. Ytterbium.- 2.4. Reactions with Metalloproteins.- 2.4.1. Introduction.- 2.4.2. Copper Proteins.- 2.4.3. Hemoglobin and Myoglobin.- 2.4.4. Cytochromes.- 2.4.5. Iron-Sulfur Proteins.- 3. Metal-Ligand Redox Reactions.- 3.1. Introduction.- 3.2. Oxygen, Peroxide, and Other Oxygen Compounds.- 3.2.1. Dioxygen.- 3.2.2. Hydrogen Peroxide.- 3.2.3. Alkyl Hydroperoxides.- 3.3. Nitrogen Compounds and Oxyanions.- 3.3.1. Hydrazine, Azides, Hydroxylamines, and Derivatives.- 3.3.2. Oxynitrogen Compounds.- 3.3.3. Amines and Nitriles.- 3.4. Sulfur Compounds and Oxyanions.- 3.4.1. Peroxodisulfate and Peroxomonosulfate.- 3.4.2. Sulfur Dioxide and Sulfite Ions.- 3.4.3. Sulfoxides.- 3.4.4. Alkyl Sulfur Compounds.- 3.4.5. Selenium, Tellurium, and Elemental Sulfur.- 3.5. Halogen, Halides, and Halogen Oxyanions.- 3.5.1. Halogens.- 3.5.2. Halides.- 3.5.3. Oxyhalogen Compounds.- 3.6. Phosphorus, Arsenic, and Oxycompounds.- 3.6.1. Phosphorus Oxyanions.- 3.6.2. Phosphines and Arsines.- 3.7. Inorganic Radicals.- 3.8. Ascorbic Acid, Quinols, Catechols, and Diols.- 3.8.1. Ascorbic Acid.- 3.8.2. Aromatic Diols and Diones.- 3.8.3. Aromatic and Aliphatic Alcohols.- 3.9. Carboxylic Acids, Carboxylates, Carbon Dioxide, and Carbon Monoxide.- 3.9.1. Carboxylic Acids and Carboxylates.- 3.9.2. Carbon Dioxide and Carbon Monoxide.- 3.10. Alkyl Halides.- 3.11. Organic Radicals.- II. Substitution and Related Reactions.- 4. Reactions of Compounds of the Nonmetallic Elements.- 4.1. Boron.- 4.2. Carbon.- 4.3. Silicon.- 4.4. Germanium.- 4.5. Nitrogen.- 4.6. Phosphorus.- 4.7. Arsenic.- 4.8. Oxygen.- 4.9. Sulfur.- 4.10. Selenium and Tellurium.- 4.11. Halogens, Krypton, and Xenon.- 4.11.1. Fluorine.- 4.11.2. Chlorine.- 4.11.3. Bromine.- 4.11.4. Iodine.- 4.11.5. Krypton and Xenon.- 4.12. Oscillating Reactions.- 5. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 4 and 5.- 5.1. Introduction.- 5.2. Associative Ligand Exchange at Square-Planar Platinum(II).- 5.3. Associative Ligand Exchange at Square-Planar Palladium(II).- 5.4. Ligand Exchange at Platinum(II) by Dissociative Processes.- 5.5. Ligand Exchange at Nickel.- 5.6. Reactions of Planar Ir(I), Rh(I), Au(III), and Cu(II) Complexes.- 5.7. Five-Coordinate Species.- 5.8.TransEffect.- 5.9. Isomerizations.- 6. Substitution Reactions of Inert-Metal Complexes-Coordination Numbers 6 and Above: Chromium.- 6.1. Introduction.- 6.2. Aquation and Solvolysis of Chromium(III) Complexes.- 6.2.1. [Cr(III)(L5)X]n+1Systems (L = OH2, NH3).- 6.2.2. Cr(III)-C Bond Rupture.- 6.2.3. Amine and Other Complexes.- 6.2.4. Dechelation/Chelation Processes.- 6.2.5. Metal-Ion-Assisted Aquation.- 6.2.6. Porphyrins.- 6.3. Formation of Chromium(III) Complexes.- 6.3.1. The Nature of the Cr3+Cation in Aqueous Solution.- 6.3.2. Anation Reactions.- 6.4. Base Hydrolysis.- 6.5. Oxidation and Reduction of Cr(III) Complexes.- 6.6. Isomerization and Racemization.- 6.7. Photochemistry and Photophysics of Chromium(III) Complexes.-...
The next article includes the description of the rich chemistry of phosphinines, including azaphosphinines. The sixth article deals with synthetic approaches to different types of 1- heterophosphacyclanes, including four-, five-, and six-membered P-heterocycles. The next two articles cover the chemistry of phosphorus containing mac- cycles. The phosphorus containing calixarenes have attracted much attention in recent years due to their various functions such as metal cations binding, catalysis, molecular recogination, and bioactivity. Likewise, other phosphorus-containing macrocycles, cryptands, and dendrimers find various uses in analytical chemistry and biochemistry. We hope to include the following articles in the second volume on phosphorous heterocycles: Diazaphospholes Selected phosphorous heterocycles containing a stereogenic phosphorus Heterophenes carrying phosphorus functional groups as key structures The synthesis and chemistry of the phospholane ring system Synthesis and bioactivity of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives Recent developments in the chemistry of N-heterocyclic phosphines. I would be failing in my duty if I do not express my sincere thanks to the people at Springer, particularly Ms. Birgit Kollmar-Thoni and Ms. Ingrid Samide, for coordinating the project with great dedication.
Zeolites have unusual properties and as a result they are some of the most interesting inorganic materials known today. In contrast to conventional nanomaterials, zeolites exhibit a long-term stable inner void system on the nanometer scale and their properties are almost independent from the crystal size. This volume summarizes the known properties of natural zeolites and, importantly, shows how they can be synthesized by simulating the conditions of natural formation. Systematically, a direct correlation between the glassy precursor composition and that of the zeolite product is established. The zeolite crystal morphology obtained at given synthesis conditions allows direct conclusions on the conditions of formation in nature. This book is a valuable practical guide and tool for solid-state chemists, physicists, mineralogists and engineers.
Recent studies indicate that China accounts for about 96 percent of the world's supply of rare earth materials (REMs). With REMs becoming increasingly important for a growing number of high-tech applications, appropriate action must be taken to mitigate the effects of a shortage of critical REMs in defense systems and components. Bringing together information previously available only from disparate journal articles and databases, Rare Earth Materials: Properties and Applications describes the unique characteristics and applications of 17 REMs. It defines their chemical, electrical, thermal, and optical characteristics. Maintaining a focus on physical and chemical properties, it addresses the history and critical issues pertaining to mining and processing of REMs. In this book, Dr. A.R. Jha continues his distinguished track record of distilling complex theoretical physical concepts into an understandable technical framework that can be extended to practical applications across commercial and industrial frameworks. He summarizes the chemical, optical, electrical, thermal, magnetic, and spectroscopic properties of REMs best suited for next-generation commercial and military systems or equipment. Coverage includes extraction, recycling, refinement, visual inspection, identification of spectroscopic parameters, quality control, element separation based on specific application, pricing control, and environmental / geo-political considerations. Potential applications are identified with an emphasis on scientific instruments, nuclear resonance imaging equipment, MRI systems, magnetic couplers for uranium enrichment equipment, battery-electrodes, electric motors, electric generators, underwater sensors, and commercial and military sensors. The book describes unique applications of rare earth magnets in all-electric and hybrid electric cars and microwave components. It also considers the use of rare earth magnets in commercial and military systems where weight and size are the critical design requirements. Suitable for both students and design engineers involved in the development of high-technology components or systems, the book concludes by summarizing future applications in electro-optic systems and components, including infrared lasers, diode-pumped solid-state lasers operating at room temperatures, and other sophisticated military and commercial test equipment
This book provides a broad and complete introductions to the molecular structure, novel and anomalous properties, nonlinear excitations, soliton motions, magnetization, and biological effects of water. These subjects are described by both experimental results and theoretical analyses. These contents are very interesting and helpful to elucidate and explain the problem of "what is on earth water". This book contains the research results of the author and plenty of scientists in recent decades."Water: Molecular Structure and Properties" is self-contained and unified in presentation. It may be used as an advanced textbook by graduate students and even ambitious undergraduates in Physics and Biology. It is also suitable for the researchers and engineers in Physics, Biology and water science.
This book explores the applications of ferroelectric materials in information technology by developing several prototype devices based on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals. It describes how an optothermal field-effect transistor (FET) was constructed on the PMN-26PT single crystal, using a MoS2 monolayer as the channel semiconductor material. This fusion of pyroelectric effect and the interface engineering of 2D materials provides an effective strategy for the 'photon revolution' of FET. An ultra-broadband photodetector (UV ~ THz) was monolithically integrated into a [111]-oriented PMN-28PT single crystal by using silver nanowires in the transparent top electrode. The photodetector showed a dramatic improvement in operation frequency up to 3 kHz: an order of magnitude higher than that of traditional pyroelectric photodetectors. A self-powered integrated module was demonstrated through the combination of a triboelectric nanogenerator and a ferroelectric FET. The stored information can easily be written in the memory system using mechanical energy, solving the power consumption problem with regard to information writing in ferroelectric nonvolatile memories. This book extends the applications of ferroelectric single crystals into areas other than piezoelectric devices, paving the way for exciting future developments.
The ?eld of metal boron chemistry has been an especially active one since the 1960s. Much of the early work centered on the synthesis and structural characterization of polyhedral metallaborane and metallacarborane clusters, which will not be discussed in the current Volume. However, early work on metal boryl complexes by Noth et al. also appeared during this period, - thoughthe?rstsimple metalborylcomplexestobestructurallycharacterized bysingle-crystalX-raydiffractionwerenotreporteduntil1990(indeed,crystal structuresofiridiumhydridoborylcomplexeswerereportednearlysimulta- ouslybyBaker,Marder,etal. [1]andbyMerolaetal. [2]),andthisnewinterest in the area arose speci?cally as a result of the report by Noth et al. [3] on the rhodium-catalyzed hydroborationof alkenes using catecholborane. Although there had been previous reports of metal-catalyzed hydroboration employing polyhedralboranesorcarboranesastheB-Hsource[4], theseminal paper by Noth et al. in 1985 [3] marked the beginning of interest by the organic ch- istry community in the application of this reaction in organic synthesis [5]. Whatensuedwasaveryrapidincreaseinthenumberofmetalborylcomplexes to be synthesized and structurally characterized, along with studies of their reactivity,in conjunctionwithan equally rapid growthinthedevelopment of catalytichydroborationchemistry[5]anditsasymmetricversion[5e]. Thiswas followedbyawidevarietyofotherborylationreactionscatalyzedbytransition metals including diborations, silylborations, stannylborations, and thiabo- tions of unsaturated organic substrates [6], borylations of ?,?-unsaturated carbonyl compounds [7], borylations of C-halide bonds [8], and most - cently, borylations of C-H bonds in alkenes, arenes, heteroarenes, and even alkanes[9,10]. TheC-halideandC-Hborylationchemistryhasbeendrivenby thedevelopment andbroadapplicationoftheSuzuki-Miyaura cross-coupling reaction[11],whichisnowoneofthemainC-Cbond-formingreactionsinthe arsenal of the organic chemist. Thus, the synthetic and structural chemistry ofmetalborylcomplexeshasgrownalongwithcatalyticapplicationsinwhich metal borylcomplexes are key intermediates. Likewise, the importance of metal borane?-complexes as intermediates in many catalytic reactions has only recently been recognized [12], and thisarea is now a rapidly expanding one.
This unique volume provides a broad introduction to plasmon resonances in nanoparticles and their novel applications. Here, plasmon resonances are treated as an eigenvalue problem for specific boundary integral equations and general physical properties of plasmon spectrum are studied in detail. The coupling of incident radiation to specific plasmon modes, the time dynamics of their excitation and dephasing are also analytically treated. Finally, the applications of plasmon resonances to SERS, light controllability (gating) of plasmon resonances in semiconductor nanoparticles, the use of plasmon resonances in thermally assisted magnetic recording (TAMR), as well as in all-optical magnetic recording and for enhancement of magneto-optic effects are presented.
The development of new experimental techniques to study phenomena, such as the anomalous skin effect, cyclotron resonance in magnetic fields normal to then metal surface, and high-frequency properties of metals, as well as the discovery of collective excitations arising from electron-electron correlations, have offered a new impetus for the analysis of the electronic properties of metals. This book discusses the local geometry of the Fermi surface and its effects on high-frequency phenomena in metals and metallic conductors. After an introductory chapter reviewing the electron-liquid theory of metals the discussion turns to techniques useful in analyzing properties of real Fermi surfaces, which are rarely spherical. In subsequent chapters these techniques are applied to concrete problems such as the anomalous skin effect, cyclotron resonance, attenuation of ultrasonic fields, dopplerons, the effects of zero-curvature portions of the Fermi surface, and the behavior of the Fermi surface in low-dimensional structures.
Metal phosphonate chemistry is a highly interdisciplinary field, as it encompasses several other areas, such as materials chemistry, gas storage, pharmaceutics, corrosion control, classical chemical synthesis, X-Ray crystallography, powder diffraction, etc. It has also acquired additional significance due to "Metal-Organic Frameworks," as evidenced by the hundreds of papers published each year. Currently there is no other book on the topic and this book fills the gap in the literature by summarising in a concise way the latest developments in the field. Metal phosphonate chemistry has seen impressive growth in the last 15-20 years and there is a clear need to systematize and organize all this growth. This unique book accomplishes just that need - edited by two experts, it includes contributions from other experienced researchers and organises, cateqorises and presents in an attractive way the latest hot topics in metal phosphonate chemistry and related applications. With an extensive bibliography, it is a great reference for academic and industrial researchers as well as students working in the field and will act as a starting point for further exploration of the literature. It is also of great interest to scientists working in the broader area of metal-organic frameworks and their applications.
Metallic systems are ubiquitous in daily life. They play key roles, for example, in the chemistry of many biomolecules, ionic solutions, nanoparticles, and catalytic processes. They may be in solid, liquid, or gaseous form. The interactions of other molecules with metal surfaces are of considerable importance. Each of these topics is addressed in Metallic Systems. As we have entered the age where theoretical approaches are sufficiently mature to complement and guide experiments in many areas, an understanding of the theoretical tools and approaches to studying metallic systems is essential. Metallic Systems is concerned with enhancing our understanding of the diverse chemistry of metals and metal-containing systems and the applicability of modern quantum chemistry methodologies to study them. Metallic Systems presents brief overviews of most of the popular approaches to quantum chemical treatments and computations of chemical systems that include metals. Attention is given to the potentialities and limitations of first principles Density Functional Theory and dynamics methods (e.g. QM/MM approaches). The book emphasizes the importance of using methods that take into account crucial physical features such as explicit solvation, temperature and dynamics of metal-containing systems. It emphasizes first principles calculations in providing reliable and detailed information concerning electronic structures, mechanisms, and reaction energetics. Accessible to newcomers to the field, Metallic Systems overviews theory underpinning current methodologies. It presents a practical set of modalities for studying metallic systems, assesses current technological barriers, and examines future challenges and topics of exploration.
Written for students taking the A-level examinations, this textbook covers essential topics under the University of Cambridge stipulated A-level chemistry syllabus. It is written in such a way as to guide the reader through the understanding and applications of essential chemical concepts by introducing a discourse feature - the asking and answering of questions - that stimulates coherent thinking and hence, elucidates ideas. Based on the Socratic Method, questions are implanted throughout the book to help facilitate the reader's development in forming logical conclusions of concepts. The book helps students to master fundamental chemical concepts in a simple way.Topics are explored through an explanatory and inquiry-based approach. They are interrelated and easy to understand, with succinct explanations/examples being included, especially on areas that students frequently find difficult. Topics address the whys and hows behind key concepts to be mastered, so that the concepts are made understandable and intuitive for students. The focus is on conceptual learning so as to equip students with knowledge for critical learning and problem solving.Existing A-levels textbooks and guidebooks generally introduce concepts in a matter-of-fact manner. This book adds a unique pedagogical edge which few can rival. Through their many years of teaching experiences, the authors have acquired a sound awareness of common students' misconceptions which are relayed through the questions and thus help to reinforce concepts learnt.
Over the last fifteen years, N-heterocyclic carbenes (NHCs) have mostly been used as ancillary ligands for the preparation of transition metal-based catalysts. Compared to phosphorus-containing ligands, NHCs tend to bind more strongly to metal centres, avoiding the necessity for the use of excess ligand in catalytic reactions. The corresponding complexes are often less sensitive to air and moisture, and have proven remarkably resistant to oxidation. Recent developments in catalysis applications have been facilitated by the availability of carbenes stable enough to be bottled, particularly for their use as organocatalysts. This book shows how N-heterocyclic carbenes can be useful in various fields of chemistry and not merely laboratory curiosities or simple phosphine mimics. NHCs are best known for their contribution to ruthenium and palladium-catalysed reactions but the scope of this book is much broader. The synthesis of NHC ligands and their corresponding metal complexes are covered in depth. Moreover, the biological activity of NHC-containing complexes, as well as an overview of their theoretical aspects are included. Such metal species are further examined, not only in terms of their catalytic applications, but also of their stereoelectronic parameters and reactivity/stability. Finally, special attention is given to the hot topic of organocatalysis. The book will be of interest to postgraduates, academic researchers and those working in industry.
The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding and Metal Ions: Mechanisms, Biology and Disease presents the contributions of a cadre of international experts who offer a comprehensive exploration of this timely subject at the forefront of current research. Divided into four sections, this volume: Provides case study examples of protein folding and stability studies in particular systems or proteins that comprise different metal ions of co-factors Reviews the proteins that shuttle metal ions in the cell to a particular target metalloprotein Illustrates how metal binding can be connected to pathological protein conformations in unrelated diseases, from cancer to protein deposition disorders such as Parkinson's disease Addresses protein redesign of metal-containing proteins by computational methods, folding simulation studies, and work on model peptides - dissecting the relative energetic contribution of metals sites to protein folding and stability Together, the 13 chapters in this text cogently describe the state of the science today, illuminate current challenges, propose future possibilities, and encourage further study in this area that offers much promise especially with regard to novel approaches to the treatment of some of the most challenging and tragic diseases.
New procedures and compounds for students and professionals in the field of inorganic chemistry The Inorganic Syntheses series provides all users of inorganic substances with detailed and foolproof procedures for the preparation of important and timely compounds. In Volume 33, editor Dimitri Coucouvanis collects syntheses that present new or revised experimental procedures that are applicable to a variety of related compounds, as well as syntheses of individual compounds that are of interest or importance. Chapter topics are comprised of syntheses of selected supramolecules, useful reagents/ligands, solid state materials/clusters, and compounds of general interest, including mesityl-gold (I)complexes and zero valent binuclear nickel complexes, among many others All the syntheses presented have been tested. Inorganic, organic, and organometallic chemists, as well as materials scientists, instructors, and graduate students will find the research, methods, and compounds contained here invaluable to their scientific pursuits.
Gold is used in a wide range of industrial and medical applications and accounts for over 10 percent of the annual demand for metal, worth billions of dollars annually. While much has been written about the mystique and trade of gold, very little has been written about the science and technology in which it is involved. Edited by two respected authorities from the World Gold Council, Gold: Science and Applications provides researchers with the definitive handbook on the current science and applications of this valuable and beautiful precious metal. Packed with contributions from the world's leading experts, this volume brings in authoritative information from a number of sciences, including chemistry, physics, nanotechnology and metallurgy. The book presents a myriad of applications, ranging from electronics to medicine and optics. A comprehensive overview chapter provides historical perspectives of the element and each chapter describes potential further uses, including applications currently being developed. Gold Applications in Use Today Include: Medical Dental Electronics Engineering Industrial Pollution Control Photography Catalysts Nanotechnology
This book summarises approaches and current practices in actinide immobilisation using chemically-durable crystalline materials such as ceramics and monocrystals.As a result of the increasing worldwide growth of the nuclear industry, long-lived -emitting actinides such as Pu, Np, Am and Cm are fast becoming a serious environmental concern - actinide-bearing wastes have accumulated in different countries due to nuclear weapons production. On the other hand, as actinides are chemical elements with unique properties they could be beneficially used for humankind in areas such as medicine and technology. Durable actinide-containing materials are attractive for various applications. These include in chemically-inert sources of -irradiation used for a variety of functions such as energy sources for unmanned space vehicles and microelectronic devices, as well as hosts for nuclear waste and in nuclear fuels to burn excess Pu.Unfortunately, there is currently no appropriate balance between safe actinide disposal and use, even though both processes require their immobilisation in a durable host material. Thus, the choice of an optimal actinide immobilisation route is often a great challenge for specialists.Although a wealth of information exists about actinide properties in many publications, little has been published summarising currently accepted approaches and practices for actinide immobilisation. Crystalline Materials for Actinide Immobilisation fills this gap using information based on the authors' first-hand experience and studies in nuclear materials management and actinide immobilisation.
Inorganic chemistry continues to generate much current interest due to its array of applications, ranging from materials to biology and medicine. Techniques in Inorganic Chemistry assembles a collection of articles from international experts who describe modern methods used by research students and chemists for studying the properties and structures of inorganic chemicals. Crystallography and diffraction methods The book begins by examining developments in small-molecule x-ray crystallography. It identifies some of the major advances, discusses current attitudes toward crystallography and its uses, and considers challenges and future prospects. It then examines how ab initio x-ray powder diffraction (XRPD) methods are used to determine structure, with discussions on metal pyrazolates, metal imidazolates, and metal pyrimidinolates. This is followed by a description of single crystal neutron diffraction, a powerful structural technique. The text highlights what can presently be achieved in neutron diffraction and discusses future applications of neutron scattering. Quantum chemistry Reflecting the popularity of density functional calculations, the book includes a chapter that focuses on quantum chemistry. It examines the latest computational techniques and describes how these techniques can be applied to solve a wide range of real-world problems encountered in the realm of inorganic chemistry and particularly in transition metal chemistry. It also explains the intelligent use of quantum chemical methods for the determination of molecular structure, reactivity, and spectra of coordination and organometallic compounds. Spectroscopy Lastly, the text explores important spectroscopic approaches. It first describes intermolecular nuclear Overhauser effect (NOE) NMR experiments and diffusion experiments, offering examples that demonstrate theoretical aspects of the methodology. The final chapter summarizes recent experimental and theoretical work on pressure effects on the d-d and luminescence spectra of transition metal complexes. Derived from select articles in Comments on Inorganic Chemistry, this volume provides a solid background in the array of techniques available in the researcher's toolkit.
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.
Gold is used in a wide range of industrial and medical applications and accounts for over 10 percent of the annual demand for metal, worth billions of dollars annually. While much has been written about the mystique and trade of gold, very little has been written about the science and technology in which it is involved. Edited by two respected authorities from the World Gold Council, Gold: Science and Applications provides researchers with the definitive handbook on the current science and applications of this valuable and beautiful precious metal. Packed with contributions from the world's leading experts, this volume brings in authoritative information from a number of sciences, including chemistry, physics, nanotechnology and metallurgy. The book presents a myriad of applications, ranging from electronics to medicine and optics. A comprehensive overview chapter provides historical perspectives of the element and each chapter describes potential further uses, including applications currently being developed. Gold Applications in Use Today Include: Medical Dental Electronics Engineering Industrial Pollution Control Photography Catalysts Nanotechnology
Ring systems represent a very important branch of organic chemistry. Benzene is perhaps the pre-eminent example and provides the benchmark for the so-called aromatic character of cyclic systems. Cycloalkanes are another prominent class of organic compounds and these saturated ring systems form a homologous series known as alicyclics. Materials that are constructed from organic polymers such as polythene, polystyrene, polyisoprene (natural rubber) and polyvinyl chloride are common features of our daily lives. Most of these and related organic polymers are generated from acyclic precursors by free radical, anionic, cationic or organometallic polymerisation processes or by condensation reactions. The focus of this book is monocyclic inorganic ring systems of the p-block elements and the polymers that are, in many cases derived from them. Bicyclic or polycyclic arrangements are considered when they are closely related to those of monocyclic systems. Inorganic heterocycles that are more accurately described as coordination complexes of chelating inorganic ligands are included only when they are directly related to an inorganic homocycle or heterocycle by the replacement of one p-block element by a more metallic p-block element. After a short introductory chapter, the first half of the book is comprised of seven chapters that deal with the fundamentals of the subject intended for undergraduates or researchers who are unfamiliar with the topic, covering the following areas: - synthetic methods - characterisation techniques - delocalisation in inorganic rings - paramagnetic inorganic rings - inorganic macrocycles - ligand chemistry - inorganic polymers (general concepts including, synthesis, structure and bonding, characterisation methods, properties and applications) The final four chapters discuss in detail the chemistry of inorganic homo- and hetero-cycles involving the elements of groups 13-16 (the p-block elements). The focus is on relating the early seminal contributions to the field with exciting new developments. From the fundamental standpoint, novel structures and new bonding concepts are highlighted, in addition to synthetic approaches. This is the first book that addresses both the fundamental and applied aspects of inorganic ring systems through an emphasis of their use as precursors to inorganic polymers and other useful materials (e.g. semiconductors and ceramics). The book is intended primarily for senior undergraduates and graduate students in inorganic chemistry, as well research workers in the field of inorganic ring systems and polymers. At the undergraduate level it serves as a supplementary text to the more general inorganic chemistry text books and at the graduate level it would be the text of choice for a course in the area of inorganic rings and polymers.
The series Structure and Bonding publishes critical reviews on
topics of research concerned with chemical structure and bonding.
The scope of the series spans the entire Periodic Table and
addresses structure and bonding issues associated with all of the
elements. It also focuses attention on new and developing areas of
modern structural and theoretical chemistry such as nanostructures,
molecular electronics, designed molecular solids, surfaces, metal
clusters and supramolecular structures. Physical and spectroscopic
techniques used to determine, examine and model structures fall
within the purview of Structure and Bonding to the extent that the
focus is on the scientific results obtained and not on specialist
information concerning the techniques themselves. Issues associated
with the development of bonding models and generalizations that
illuminate the reactivity pathways and rates of chemical processes
are also relevant.
This timely and unique publication is designed for graduate students and researchers in inorganic and materials chemistry and covers bonding models and applications of symmetry concepts to chemical systems. The book discusses the quantum mechanical basis for molecular orbital concepts, the connections between molecular orbitals and localized views of bonding, group theory, bonding models for a variety of compounds, and the extension of these ideas to solid state materials in band theory. Unlike other books, the concepts are made tangible to the readers by guiding them through their implementation in MATLAB functions. No background in MATLAB or computer programming is needed; the book will provide the necessary skills. Key Features Visualization of the Postulates of Quantum Mechanics to build conceptual understanding MATLAB functions for rendering molecular geometries and orbitals Do-it-yourself approach to building a molecular orbital and band theory program Introduction to Group Theory harnessing the 3D graphing capabilities of MATLAB Online access to a growing collection of applications of the core material and other appendices Bonding through Code is ideal for first-year graduate students and advanced undergraduates in chemistry, materials science, and physics. Researchers wishing to gain new tools for theoretical analysis or deepen their understanding of bonding phenomena can also benefit from this text. About the Author Daniel Fredrickson is a Professor in the Department of Chemistry at the University of Wisconsin-Madison, where his research group focuses on understanding and harnessing the structural chemistry of intermetallic phases using a combination of theory and experiment. His interests in crystals, structure, and bonding can be traced to his undergraduate research at the University of Washington (B.S. in Biochemistry, 2000) with Prof. Bart Kahr, his Ph.D. studies at Cornell University (2000-2005) with Profs. Stephen Lee and Roald Hoffmann, and his post-doctoral work with Prof. Sven Lidin at Stockholm University (2005-2008). As part of his teaching at UW-Madison since 2009, he has worked to enhance his department's graduate course, Physical Inorganic Chemistry I: Symmetry and Bonding, through the incorporation of new material and the development of computer-based exercises. |
You may like...
Diverse Perspectives and…
Thomas M. Connolly, Petros Papadopoulos, …
Hardcover
R8,550
Discovery Miles 85 500
|