Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Inorganic chemistry
Rare Earth Metal-Organic Framework Hybrid Materials for Luminescence Responsive Chemical Sensors primarily focuses on rare earth functionalized metal-organic framework (MOF) hybrid materials for sensing applications. Sections cover an introduction to the field and key concepts like luminescence, rare earth ion luminescence and luminescence response for chemical sensing. Other section emphasize the luminescence response mode and sensing mechanisms of these important materials, including single mode and dual mode sensing, as well as chemical sensing mechanisms. Final sections outline different kinds of sensing analytes by rare earth functionalized MOFs hybrids and delve into emerging application. This book is suitable for materials scientists and engineers, materials chemists, chemists and chemical engineers. In addition, the material is appropriate for those working in academia and R&D in industry.
This book provides detailed information on the electrochemistry of technetium compounds. After a brief physico-chemical characterization of this element, it presents the comparative chemistry of technetium, manganese and rhenium. Particular attention is paid to the stability, disproportionation, comproportionation, hydrolysis and polymerization reactions of technetium ions and their influence on the observed redox systems. The electrochemical properties of both inorganic as well as organic technetium species in aqueous and non-aqueous solutions are also discussed. The respective chapters cover the whole spectrum of topics related to the application of technetium in nuclear medicine, electrochemistry of technetium in spent nuclear fuel (including corrosion properties of technetium alloys), and detecting trace amounts of technetium with the aid of electrochemical methods. Providing readers with information not easily obtained in any other single source, the book will appeal to researchers working in nuclear chemistry, nuclear medicine or the nuclear industry.
Instant Notes titles focus on core information and are designed to help undergraduate students come to grips with a subject quickly and easily. Instant Notes in Inorganic Chemistry, Second Edition has been fully updated and new material added on recent developments in noble-gas chemistry and the synthesis, reactions and characterization of inorganic compounds. New chapters cover the classification of inorganic reaction types concentrating on those useful in synthesis; techniques used in characterizing compounds, including elemental analysis; spectroscopic methods (IR, NMR) and structure determination by X-ray crystallography; and the factors involved in choosing appropriate solvents for synthetic reactions. The new edition continues to provide concise, comprehensive coverage of inorganic chemistry at an undergraduate level, offering easy access to all important areas of inorganic chemistry in a format which is ideal for learning and rapid revision.
This reference describes standard and nonstandard coordination modes of ligands in complexes, the intricacies of polyhedron-programmed and regioselective synthesis, and the controlled creation of coordination compounds such as molecular and hn-p-complexes, chelates, and homo- and hetero-nuclear compounds. It offers a clear and concise review of modern synthetic techniques of metal complexes as well as lesser known gas- and solid-phase synthesis, electrosynthesis, and microwave and ultrasonic treatment of the reaction system. The authors pay special attention to o-hydroxyazomethines and their S-, Se-containing analogues, b-diketones, and quinines, among others, and examine the immediate interaction of ligands and metal salts or carbonyls.
The Chemistry and Physics of Carbon series presents advances in
carbon research and development and comprehensive reviews on the
state of the science in all these areas. Building on the tradition
of its highly acclaimed predecessors, Volume 28 of this series
presents authoritative, interdisciplinary coverage of contemporary
topics. With contributions by leading international experts and
more than 1300 references, this indispensable volume discusses the
structure of glassy carbon, carbon fibers, carbon black (soot),
chars, spherulitic graphite in cast iron and naturally occurring
forms of carbon; and structural similarities with fullerenes,
carbon nanotubes, and carbon nanoparticles.
In the early nineteenth century chemists knew of the existence of ninety-two chemical elements, from Hydrogen to Uranium. For nearly forty years scientists thought they knew the content of our planet and all of its contents. In the late 1930s the world of chemical science began to discover elements beyond Uranium - the 'transuranics'. These new, super-heavy elements are probably not found in nature at all but can be detected, if only for a few fractions of a second, in precisely designed experiments using powerful nuclear tools. On Beyond Uranium: Journey to the End of the Periodic Table is full of exciting new concepts and tells the story of the author's quest to discover elements never before known to man.
Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites.
This book reviews some of the latest developments in the field of water treatment using multi-functional chitosan-based materials. It covers the production of chitosan beads and membranes from chitosan powder, as well as modification techniques for enhancing the material for commercial and industrial purposes. The book summarizes the results of experimental adsorption/desorption studies for elucidating the underlying reaction mechanism of heavy-metal removal from wastewater, presenting an advanced overview of an array of characterization techniques such as Fourier-transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction, and scanning electron microscopy. Additionally, it features a look at the development and application of specialized engineering software and image analysis for modelling the kinetics of adsorption. This book is ideal for scientists and engineers working in the broader field of environmental materials science. It is all well suited for chemists, as well as industrial and civil engineers, interested in wastewater treatment and mitigation of water pollution
This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
This book provides an overview of the design, synthesis, and characterization of different photoactive hybrid organic-inorganic materials, based on the combination of mainly organic molecules and inorganic nanostructures, tackling their uses in different scientific fields from photonics to biomedicine. There are many examples extensively describing how the confinement of organic compounds (i.e. chromophores, photochromic molecules or photoreactants), or other photoactive compounds (i.e.metal clusters) into several microporous systems can modulate the photophysical properties and photochemical reactions leading to interesting applications. Among (ordered)-hosts, different systems of diverse nature are widely used, such as the, the 1D- or 3D- channels of zeolitic frameworks, interlayer space of 2D-clays, the organic nanospace of curcubituril and cyclodextrins or the organo-inorganic porous crystalline MOFs systems. This volume highlights the advances of these photoactive materials and aims to be an inspiration for researchers working in materials science and photochemistry, including chemists, material engineers, physicists, biologists, and medical researchers.
This book discusses current techniques and instrumentation for cluster chemistry. It addresses both the experimental and theoretical aspects of gas-phase metal cluster reactivities, especially those pertaining to pollution removal, energetic reactions and corrosion and anticorrosion. These metal cluster systems have attracted enormous interest as they display a completely new class of physical, chemical, electronic, magnetic and catalytic properties. As these properties change with size and composition, it can thus be understood how their nature evolves from atoms to bulk solids. The book offers readers a basic understanding of the structural chemistry and reactivity of metal clusters in both gas-phase and wet chemistry. Further, the lessons they learn here regarding metal cluster chemistry will prepare researchers for the study of condensed phase dynamics that pertain to wet chemical synthesis, soft-landing deposition and cluster assembly.
This book focuses on theoretical and computational studies by the editor's group on the direct hydroxylation of methane, which is one of the most challenging subjects in catalyst chemistry. These studies of more than 20 years include gas-phase reactions by transition-metal oxide ions, enzymatic reactions by two types of methane monooxygenase (soluble and particulate MMO), catalytic reactions by metal-exchanged zeolites, and methane C-H activation by metal oxide surfaces. Catalyst chemistry has been mostly empirical and based on enormous experimental efforts. The subject of the title has been tackled using the orbital interaction and computations based on extended Huckel, DFT, and band structure calculations. The strength of the theoretical studies is in the synergy between theory and experiment. Therefore, the group has close contacts with experimentalists in physical chemistry, catalyst chemistry, bioinorganic chemistry, inorganic chemistry, and surface chemistry. This resulting book will be useful for the theoretical analysis and design of catalysts.
Fundamentals and Applications of Boron Chemistry highlights its impressive potential for current and future developments across a range of fields, providing foundational information on boron chemistry and systematically summarizing applications of boron in energy, medicinal chemistry, and materials chemistry. Beginning with an introduction to boron chemistry which outlines the boron element and its physical and chemical properties, this book goes on to discuss advances in boron coordination chemistry, before delving deeper into key fields of application. The latest developments in boron-based catalysts in organic reactions are reviewed, followed by novel emerging boron-containing materials and their potential applications in areas such as hydrogen storage, and boron materials with special optical activity. Finally, advance boron-based drugs and therapies are explored. This book fills the current market gap, systematically summarizing developments and applications of boron in energy, medicinal chemistry, and materials chemistry in a single, accessible volume. It is a valuable reference for chemists, students, and researchers in relative areas.
This book offers a compact overview on crystallography, symmetry, and applications of symmetry concepts. The author explains the theory behind scattering and diffraction of electromagnetic radiation. X-ray diffraction on single crystals as well as quantitative evaluation of powder patterns are discussed.
This book covers the role of water in global atmospheric phenomena, focussing on the physical processes involving water molecules and water microparticles. It presents the reader with a detailed look at some of the most important types of global atmospheric phenomena involving water, such as water circulation, atmospheric electricity and the greenhouse effect. Beginning with the cycle of water evaporation and condensation, and the important roles played by the nucleation and growth processes of water microdroplets, the book discusses atmospheric electricity as a secondary phenomenon of water circulation in the atmosphere, comprising a chain of processes involving water molecules and water microdroplets. Finally, the book discusses aspects of the molecular spectroscopy of greenhouse atmospheric components, showing how water molecules and water microdroplets give the main contribution to atmospheric emission in the infrared spectrum range. Featuring numerous didactic schematics and appendices detailing all necessary unit conversion factors, this book is useful to both active researchers and doctoral students working in the fields of atmospheric physics, climate science and molecular spectroscopy.
Twenty years ago author Kurt Stern produced four monographs for the National Bureau of Standards on the high-temperature properties of inorganic salts containing oxyanions. Although relied upon by scientists and engineers around the world, these monographs have now become increasingly difficult to access and increasingly outdated. High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions unifies, expands upon, and brings up-to-date those standard-setting documents. It offers both qualitative and quantitative information on the behavior and properties of approximately 300 compounds, complete with thermodynamic tables of decomposition equilibria and information regarding decomposition kinetics. For each class of compounds, an existence chart in the form of a periodic table tells you at a glance which compounds are known to exist, those whose existence is uncertain, and those about which nothing is known. Supplementary tables give information about phase transitions and densities in both solid and liquid phases. Within this single volume, the author provides a comprehensive, critical review of the high-temperature properties of all the major classes of inorganic salts with oxyanions. If you work with materials or processes that involve salts at elevated temperatures, you now have an authoritative resource that obviates the need to perform extensive literature searches, data evaluations, and thermodynamic calculations-and saves you time.
This book presents Pd- and Ni-catalyzed transformations generating functionalized heterocycles. Transition metal catalysis is at the forefront of synthetic organic chemistry since it offers new and powerful methods to forge carbon-carbon bonds in high atom- and step-economy. In Chapter 1, the author describes a Pd- and Ni-catalyzed cycloisomerization of aryl iodides to alkyl iodides, known as carboiodination. In the context of the Pd-catalyzed variant, the chapter explores the production of enantioenriched carboxamides through diastereoselective Pd-catalyzed carboiodination. It then discusses Ni-catalyzed reactions to generate oxindoles and an enantioselective variant employing a dual ligand system. Chapter 2 introduces readers to a Pd-catalyzed diastereoselective anion-capture cascade. It also examines diastereoselective Pd-catalyzed aryl cyanation to synthesize alkyl nitriles, a method that generates high yields of borylated chromans as a single diastereomer, and highlights its synthetic utility. Lastly, Chapter 3 presents a Pd-catalyzed domino process harnessing carbopalladation, C-H activation and -system insertion (benzynes and alkynes) to generate spirocycles. It also describes the mechanistic studies performed on these reactions.
Leading investigators in their fields present a broad perspective of recent major research trends in synthetic fluorine chemistry. Coverage includes: various aspects of organic and inorganic fluorine chemistry, fluorination methods, organometallic fluorine chemistry and its use in synthesis, the synthesis of perfluoropolyethers (an extraordinary class of new fluorinated compounds) and much more.
This book tells the story of two of the most important figures in the history of chemistry. Carl Wilhelm Scheele (1742-1786) was the first to prepare oxygen and realise that air is a mixture of nitrogen and oxygen; he also discovered many important organic and inorganic substances. His fellow chemist and good friend, Torbern Bergman (1735-1784), was one of the pioneers in analytical and physical chemistry. In this carefully researched biography, the author, Anders Lennartson, explains the chemistry of Scheele and Bergman while putting their discoveries in the context of other 18th-century chemistry. Much of the information contained in this work is available in English for the first time.
This book presents an original investigation into alternative photovoltaic absorbers. Solar power is a highly promising renewable energy solution; however, its success is hampered by the limited cost-effectiveness of current devices. The book assesses the photovoltaic performance of over 20 materials using state-of-the-art, first-principles methods. Adopting a computational approach, it investigates atomic-scale properties at a level of accuracy that is difficult to achieve using laboratory-based experimental techniques. Unlike many theoretical studies, it provides specific advice to those involved in experimental investigations. Further, it proposes directions for future research. This book advances the field of photovoltaics in three crucial ways: firstly, it identifies why one class of proposed materials cannot achieve high efficiency, while at the same time gaining insights that can be used to design future absorbers. Secondly, it shows that poor performance in the bismuth chalcohalides is not due to fundamental limitations, and can be overcome by finely controlling synthesis conditions. Lastly, it describes a range of new stable materials that are expected to show excellent photovoltaic performance.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume Two considers the coupling, crosslinking and grafting reactions to improve the compatibility of reactive and functional polymer blends. In this book, world-renowned researchers have participated, including Dr. Sabu Thomas (Editor-in-chief for the journal 'Nano-Structures & Nano-Objects'). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume Four considers surface interactions, modifications and reactions, as well as reactive processes for recycling polymers and their biodegradability and compostability. World renowned researchers from Argentina, Austria, China, Egypt, France, Iran, Italy, Nepal and United States have participated in this book. With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.
In the fields of biologically active materials and functional
materials, fluorinated organic materials are becoming a focus of
significant interest. Over the past decade synthetic methodologies
and reagents in fluorine chemistry have been developed, especially
stereocontrolled synthetic methods, enzymatic resolution to
synthesize enantiomers, fluoromethylated reagents, and fluorination
reagents. These methods have contributed to the opening of new
pathways for fluorinated materials. However, few fluorinated
materials have been put to commercial use. Furthermore, there
remain problems to be solved, such as the handling of the
materials, availability of reagents and selectivity (stereo-,
regio-, and/or chemoselectivity). Research chemists, technical
engineers, and graduate students in all branches of chemistry,
pharmaceutics, and material science interested in fluorinated
materials need to know detailed experimental procedures of how to
synthesize the target fluorinated materials.
This book explores efficient syntheses of indole alkaloids based on gold-catalyzed cascade cyclizations, presenting two strategies for total synthesis of these natural products based on gold-catalyzed reactions of conjugated diyne or ynamide. The book first describes the total and formal synthesis of dictyodendrins A-F based on direct construction of the pyrrolo[2,3-c]carbazole core using the gold-catalyzed annulation of azido-diynes and protected pyrrole. This synthetic strategy features late-stage functionalization of the pyrrolo[2,3-c]carbazole scaffold at several positions and allows diverse access to dictyodendrins and their derivatives. Secondly, the book discusses the formal synthesis of vindorosine based on the pyrrolo[2,3-d]carbazole construction using the gold-catalyzed cascade cyclization of ynamide. Importantly, the reaction using a chiral gold complex provides the optically active pyrrolo[2,3-d]carbazole. This strategy facilitates the rapid construction of the pyrrolocarbazole core structure of aspidosperma and related alkaloids, including vindorosine. These methodologies can accelerate the medicinal application of pyrrolocarbazole-type alkaloids and related compounds. |
You may like...
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,151
Discovery Miles 51 510
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,335
Discovery Miles 23 350
Medicinal and Biological Inorganic…
Ajay Kumar Goswami, Irena Kostova
Hardcover
R3,228
Discovery Miles 32 280
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,685
Discovery Miles 26 850
Fiber Materials - Design, Fabrication…
Jeenat Aslam, Chandrabhan Verma
Hardcover
R4,931
Discovery Miles 49 310
|