![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
This Second Edition is the premier name resource in the field. It provides a handy resource for navigating the web of named reactions and reagents. Reactions and reagents are listed alphabetically, followed by relevant mechanisms, experimental data (including yields where available), and references to the primary literature. The text also includes three indices based on reagents and reactions, starting materials, and desired products. Organic chemistry professors, graduate students, and undergraduates, as well as chemists working in industrial, government, and other laboratories, will all find this book to be an invaluable reference.
Organic LEDs (OLEDs) in mobile displays have been in large-scale production for over a decade, and OLED-based televisions are rapidly gaining traction in the marketplace. OLEDs are on the verge of entering the solid-state lighting market in a big way. The OLED technology gives higher color purity and is more efficient than any of the competing technologies. When produced at scale, OLEDs are also economical. A key limitation in the development of OLEDs was the efficient conversion of all of the electrical energy put into the device into light. Until the late 1990s, the maximum efficiency of OLEDs was limited to 25% (photons/electrons), but this limitation was removed and OLEDs with 100% efficiency were reported in the early 2000s. This advance in OLED technology was driven by the author of this book. He and his collaborators developed electrophosphorescence, which is essential in reaching the 100% efficiency that is now commonplace in commercial devices.
Wetting Experiments contains experimental wetting studies related to biological problems, polymers, and catalysts. An understanding of wetting is important for numerous practical applications, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, thisvolume provides new insights into wetting experiments and fills a need not addressed by other books. Biology-related studies are devoted to the problem synthetic materials selection for use in biological media. Polymers are examined to estimate various surface characteristics, such as the ability of polymeric solids to alter their surface structures between different environments to minimize their interfacial free energy. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing insights valuable to the field.
Wetting Theory discusses the numerous practical applications of wetting, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, thisvolume provides new, critical insights into the theory of wetting. Chapters are arranged to allow readers to follow the development of a suggested approach (static and dynamic properties of wetting) and how these tools are applied to specific problems. Main attention is given to nanoscale wetting (nanodrops on solid surfaces, liquid in the nanoslit) on the basis of microscopic density functional theory and fluid dynamics on solid surfaces on the basis of hydrodynamic equations. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing invaluable insights to the field.
P.J. van der Put offers students an original introduction to materials chemistry that integrates the full range of inorganic chemistry. Technologists who need specific chemical facts to manipulate matter will also find this work invaluable as an easy-to-use reference. The text includes practical subjects of immediate use for materials such as bonding, morphogenesis, and design that more orthodox materials science volumes often leave out.
This book will help chemists and non-chemists alike understand the fundamentals of surface chemistry and precursor design, and how these precursors drive the processes of atomic layer deposition, and how the surface-precursor interaction governs atomic layer deposition processes. The underlying principles in atomic layer deposition rely on the chemistry of a precursor with a surface.
Cellulose is the most abundant organic polymer on earth. In
solution, cellulose derivatives can form liquid crystals which take
on characteristics of the solid state with unique optical and
physico-mechanical properties. The author presents an overview of
modern developments in the physical chemistry of solutions of
cellulose and its derivatives. Physical Chemistry of Non-aqueous
Solutions of Cellulose and Its Derivatives discusses:
One of the goals of An Introduction to Applied Statistical Thermodynamics is to introduce readers to the fundamental ideas and engineering uses of statistical thermodynamics, and the equilibrium part of the statistical mechanics. This text emphasises on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics. It provides an introduction to the simplest forms of Monte Carlo and molecular dynamics simulation (albeit only for simple spherical molecules) and user-friendly MATLAB programs for doing such simulations, and also some other calculations. The purpose of this text is to provide a readable introduction to statistical thermodynamics, show its utility and the way the results obtained lead to useful generalisations for practical application. The text also illustrates the difficulties that arise in the statistical thermodynamics of dense fluids as seen in the discussion of liquids.
The book includes several topics as per Universities curriculum of M.Sc. and M.Phil. course work in Chemistry. This covers different Physiological aspects of Bioinorganic Chemistry in terms of 4 Chapters with in-depth and up-to-date coverage. The book symmetrically presents (i) Coordination chemistry of chlorophylls/bacteriochlophylls and its functional aspects in photosynthesis, (ii) Complexes containing nitric oxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of nitric oxide releasing molecules (NORMS) in human beings and plants, (iv) Complexes containing carbon monoxide: Synthesis, reactivity, structure, bonding, and therapeutic aspects of carbon monoxide releasing molecules (CORMS) in human beings and plants, and (iv) Advantageous role of gaseous signaling molecule, H2S: Hydrogen sulphide and their respective donors, in ophthalmic diseases and physiological implications in plants. At the end, three relevant topics are included as appendices for updating students and faculty members.
The two chapters in Volume 84 describe transition metal catalyzed processes that form carbon-carbon bonds and carbon-oxygen bonds in very interesting and practical ways. The first chapter authored by Christina Moberg describes an important subset of one of the earliest and most important enantioselective carbon-carbon bond forming reactions that employ transition metal complexes, namely molybdenum-catalyzed, asymmetric allylic alkylations. The second chapter authored by Brian W. Michel, Laura D. Steffens, and Matthew S. Sigman deals with one of the oldest examples of transition metal catalyzed oxidation, known as the Wacker process.
The knowledge about crystal structure and its correlation with physical properties is the prerequisite for designing new materials with taylored properties. This work provides for researchers and graduates a valuable resource on various techniques for crystal structure determinations. By discussing a broad range of different materials and tools the authors enable the understanding of why a material might be suitable for a particular application.
Zeitschrift fur Kristallographie. Supplement Volume 41 presents the complete Abstracts of all contributions to the 29th Annual Conference of the German Crystallographic Society in Hamburg (Germany) 2021: - Plenary Talks - Microsymposia - Poster Session Supplement Series of Zeitschrift fur Kristallographie publishes Abstracts of international conferences on the interdisciplinary field of crystallography.
This book is essential reading for scientists and students interested in both organic and inorganic chemical technology. The authors cover the production of chemical reagents as well as trends from adjacent fields including biotechnology and process simulation. Chemical Technologies and Processes is of interest to chemical engineers, materials scientists, as well as chemists in both academia and industry.
This book summarizes some recent developments in the area of high-energy high-density (HEDM) materials. Rather than being comprehensive in scope, emphasis is given to structural and bonding features of highly energetic - terials with possible applications as high explosives (secondary explosives) or propellants. In this book we do not focus on primary explosives (e.g. lead azidereplacements)sincebyde?nitiontheexplosiveperformance(detonation velocity and detonation pressure) of such materials - although very sensitive -are much less energetic than secondary (high) explosives. Modern HEDMs derive most of their energy (i) from oxidation of the c- bon backbone, as in traditional energetic materials, (ii) from ring or cage strain, or (iii) from their very high positive heat of formation. Examples of the?rstclassare traditionalexplosives, suchasTNT, RDXand HMX.Modern nitro-compounds, such as CL-20 or the recently reported hepta- and octa- trocubanes, belong to the second group of explosives and possess very high densities and enhance the energies utilizing substantial cage strain. Members of the third class of compounds are high-nitrogen compounds (up to 85% - trogencontent), such as aminotetrazole and nitrotetrazolederivatives, which show the desired remarkable insensitivity to electrostatic discharge, friction and impact, while having very high positive heats of formation and therefore very high explosive powers. The synthesis of energetic, non-nuclear materials for military application has been a long-term goal in various academic and military research groups worldwide. Some of the current challenges that face HEDMscientists are: Demandforenvironmentallycompatibleandtoxicologicallyacceptable- plosives and propellants. Examples are replacements for TNT, RDX and HMXsince nitro-explosivesper se, aswellastheir environmental transf- mation products, are toxic."
Fullerenes–a guide to the current state of knowledge in the field The last decade has seen an explosion of research into the chemical and physical properties of a promising new class of carbon-based materials known as fullerenes. Karl Kadish and Rodney Ruoff, two highly recognized leaders in the fullerene and nanotube research community, edit a comprehensive and much-needed survey of this important and rapidly evolving field. Contributions by experts in diverse areas of chemistry, physics, pharmacology, materials science, and chemical engineering provide an excellent introduction to fullerenes and highlight their considerable potential in such cutting-edge applications as semiconductor materials, new pharmaceutical compounds, and polymers. From the electrochemistry of fullerenes to molecular and solid C36, this book offers a remarkably fresh and authoritative look at some of the hottest research topics today, including:
This textbook addresses the chemical and physicochemical principles of supramolecular host-guest chemistry in solution. It covers the thermodynamics and dynamics of inclusion and highlights several types of organic hosts. Various applications of host-guest chemistry in analytical and environmental chemistry as well as pharmaceutical and chemical industry demonstrate the versatile usability of molecular cages.
This book provides an in-depth introduction to the sol to gel transition in inorganic and hybrid organic-inorganic systems, one of the most important chemical-physical transitions and the basis of the sol-gel process. Familiarity with the fundamental chemistry and physics of this transition is essential for students in chemistry and materials science through academic and industry researchers working on sol-gel-related applications. The book features a didactic approach, using simple and clear language to explain the sol to gel transition and the accompanying processes. The text is also suitable for use in short courses and workshops for graduate students as well as professionals.This fully revised and updated new edition contains a wealth of new content. In particular, it includes a detailed discussion of the chemistry of transition metal alkoxides and organosilanes, and an extended discussion of the sol to gel transition models.
The book presents, in a unified manner, various crystallization design methods. It discusses in detail the geometric framework for representing complex phase behavior involving multiple solutes, enantiomers, hydrates, compounds, polymorphs, and solid solutions through visualization of high-dimensional phase diagrams. It also describes how the impact of transport processes is accounted for using kinetically controlled process paths.
This work introduces into the chemistry, materials science and technology of Rare Earth Elements. The chapters by experienced lecturers describe comprehensively the recent studies of their characteristics, properties and applications in functional materials. Due to the broad range of covered topics as hydrogen storage materials, LEDs or permanent magnets this work gives an up-to-date presentation of this fascinating research.
The second edition of Metal Ions in Biochemistry deals with the multidisciplinary subject of bio-inorganic chemistry, encompassing the disciplines of inorganic chemistry, biochemistry and medicine. The book deals with the role of metal ions in biochemistry, emphasising that biochemistry is mainly the chemistry of metal-biochemical complexes. Hence, the book starts with the structures of biochemicals and the identification of their metal binding sites. Thermodynamic and kinetic properties of the complexes are explained from the point of view of the nature of metal-ligand bonds. Various catalytic and structural roles of metal ions in biochemicals are discussed in detail. Features The role of Na+ and K+ in brain chemistry. The role of zinc insulin in glucose metabolism and its enhancement by vanadium and chromium compounds. Discussion of the role of zinc signals, zinc fingers and cascade effect in biochemistry. Haemoglobin synthesis and the role of vitamin B12 in it. The role of lanthanides in biochemical systems. A detailed discussion of the role of non-metals in biochemistry, a topic missing in most of the books on bio-inorganic chemistry. The study of bio-inorganic chemistry makes biochemists rethink the mechanistic pathways of biochemical reactions mediated by metal ions. There is a realisation of the role of metal complexes and inorganic ions as therapeutics such as iron in leukaemia, thalassemia and sickle cell anaemia, iodine in hypothyroidism and zinc, vanadium and chromium in glucose metabolism. The most recent realisation is of the use of zinc in the prevention and treatment of COVID-19.
|
You may like...
Exposing the Film Apparatus - The Film…
Giovanna Fossati, Annie oever
Hardcover
R3,974
Discovery Miles 39 740
Buddhist Statecraft in East Asia
Stephanie Balkwill, James A. Benn
Hardcover
R2,837
Discovery Miles 28 370
Marriage for Love - A Nineteenth-Century…
Violeta Kelertas, Maryte Racys
Hardcover
R798
Discovery Miles 7 980
The Book Of Joy - Lasting Happiness In A…
Dalai Lama, Desmond Tutu
Hardcover
(11)
Goodnight Golda - A Handbook For Brave…
Batya Bricker, Ilana Stein
Paperback
|