![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry
More than a one-volume listing of synthetic methods, Compendium of Organic Synthetic Methods offers chemists a highly focused and selective look at several thousand functional group transformations. Used by more professionals than any comparable reference on the market, this valuable desktop resource provides quick access to the recipes of the newest, most useful reactions and transformations. It also affords professionals an unparalleled opportunity to browse the vast body of recent literature for new reactions and transformations that may be of interest. Featuring 1,200 more entries than its predecessor, Volume 8 covers functional group transformations and carbon-carbon bond forming reactions appearing in the literature from 1990 through 1992. It presents approximately 1,400 examples of published reactions for the preparation of monofunctional compounds and approximately 1,640 examples of reactions that prepare difunctional compounds with various functional groups. It also features 60 more reviews than Volume 7. As in all the previous Compendium volumes, the classification schemes used allow for quick and easy reference and information retrieval. Chemical transformations are classified first by the reacting functional group of the starting material and then by the functional group formed. The transformation, major reagents that effect the transformation, yield percentage, and stereochemistry are all clearly shown. The Compendium also includes indices for both monofunctional and difunctional compounds as an efficient means of guiding you to specific classes of transformations. Compendium of Organic Synthetic Methods, Volume 8 provides professional chemists and students unparalleled access to the wealth of methods, reactions, and transformations in contemporary organic chemistry.
Internationally renowned authors review recent advances in the understanding of the structure and reactivity of transition metal hydrides. This up-to-date analysis of transition metal hydrides examines the recent upsurge of experimental studies devoted to transition metal hydrides in both gas phase and solution. It also explores the recent emergence of new refinements in the methodologies and techniques used to delineate reaction mechanisms in solution.
For the first time the discipline of modern inorganic chemistry has been systematized according to a plan constructed by a council of editorial advisors and consultants, among them three Nobel laureates (E.O. Fischer, H. Taube and G. Wilkinson). Rather than producing a collection of unrelated review articles, the series creates a framework which reflects the creative potential of this scientific discipline. Thus, it stimulates future development by identifying areas which are fruitful for further research. The work is indexed in a unique way by a structured system which maximizes its usefulness to the reader. It augments the organization of the work by providing additional routes of access for specific compounds, reactions and other topics.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
This 24th volume continues in the tradition of its predecessors, presenting authoritative, interdisciplinary coverage of contemporary topics in the field of carbon chemistry and physics. With contributions by leading international experts, this volume: describes pitch polymerization kinetics during mesophase formation and the constitution of coexisting phases in mesophase pitch during heat treatment; elucidates the mechanism of mesophase formation and pitch polymerization kinetics after mesophase formation; examines the importance of physical, solid-state, electro- and analytical chemistry in the study of carbon surfaces; discusses the theoretical background for the thermal conductivity of diamonds, single crystal diamonds and chemically-vapour-deposited diamond films; and explains the chemistry involved in the commercial fabrication and use of needle coke.
This volume is devoted to the research area regarding the biological properties of metal alkyl derivatives, offering an authoritative account of this subject by 16 scientists. In 11 chapters, Biological Properties of Metal Alkyl Derivatives highlights, in detail, derivatives of germanium, tin, lead, arsenic, antimony, selenium, tellurium, cobalt (vitamin B12 derivatives) and nickel (coenzyme F430), including the role of (mainly) micro-organisms in their formation. The derivatives of indium, thallium, bismuth, various transition metals and mercury are also covered to some extent, as are those of the non-metals silicon, phosphorus and sulfur, and the haloperoxidase route of the biogenesis of halomethanes by fungi and plants. The properties of these alkyl derivatives, their biosynthesis, including mechanistic aspects, their appearance in waters (rivers, lakes, oceans) and sediments, and their physiological and toxic effects are summarized.
For the first time the discipline of modern inorganic chemistry has
been systematized according to a plan constructed by a council of
editorial advisors and consultants, among them three Nobel
laureates (E.O. Fischer, H. Taube and G. Wilkinson).
This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "fully nanoscopic" characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed.
Carbon dioxide, bicarbonate ion, and carbonate ion comprise the most important acid-base system in natural waters, and the equilibria between them regulate the pH of seawater, as well as most rainwater, stream water, river water, and groundwater. Carbon Dioxide Equilibria and Their Applications provides a clear, compact presentation of this topic, which is central to geochemistry and environmental engineering. It emphasizes a rigorous mathematical and thermodynamic basis for calculations and their application to realistic problems. The book's first four chapters present the basic equations, mathematical techniques for visualizing and manipulating them, and data on equilibrium constants and activity coefficients. These are presented in the general context of acid-base titration and solubility of CaCO3. The remaining chapters show how these concepts and techniques are applied to geochemistry and oceanography, in addition to their applications to water conditioning. Specific topics discussed include acid rain, freshwater, seawater, carbonate sediments in the deep oceans, the effects of increased atmospheric CO2 on the oceans, estuarine waters, brines, hydrothermal solutions, pH adjustment, prediction of calcium carbonate saturation, corrosion inhibition, and water softening.
Continuing to explore the relationship between the chemistry of metals and life processes, this volume in the Metal Ions in Biological Systems series examines the degradation of environmental pollutants by micro-organisms. It covers the action of micro-organisms and metalloenzymes on lignin, tannins, hemicelluloses, cellulose and aromatic compounds, as well as on halogenated aromatics and aliphatics; analyzes mechanistic aspects; considers the role of metalloproteases in biotechnology and wastewater sludge treatment; and describes the metal-dependent conversion of inorganic nitrogen and sulfur compounds.
This book presents authoritative, interdisciplinary coverage of contemporary topics in the field of carbon chemistry and physics and clearly shows the diversity and universality of carbon research. It is useful for readers working in the general area of carbon adsorbents.
"This new book is by two knowledgeable and expert popularizers of chemistry and deals exclusively with molecules and compounds rather than with the simpler atoms and elements. It is based on the very successful Molecule of the Month website that was begun by Paul May fifteen years ago and to which his co-author Simon Cotton has been a frequent contributor. The authors strike an excellent balance between introducing the novice to the world of molecules while also keeping the expert chemist interested. I highly recommend this book to all readers. It will vastly expand your knowledge and horizons of chemistry and the human ingenuity that surrounds it." From the Foreword by Dr. Eric Scerri, UCLA, Los Angeles, website: www.ericscerri.com, Author of The Periodic Table, Its Story and Its Significance and several other books on the elements and the periodic table. The world is composed of molecules. Some are synthetic while many others are products of nature. Molecules That Amaze Us presents the stories behind many of the most famous and infamous molecules that make up our modern world. Examples include the molecule responsible for the spicy heat in chilies (capsaicin), the world s first synthetic painkiller (aspirin), the pigment responsible for the color of autumn leaves (carotene), the explosive in dynamite (nitroglycerine), the antimalarial drug (quinine), the drug known as "speed" (methamphetamine), and many others. Other molecules discussed include caffeine, adrenaline, cholesterol, cocaine, digitalis, dopamine, glucose, insulin, methane, nicotine, oxytocin, penicillin, carbon dioxide, limonene, and testosterone. In all, the book includes 67 sections, each describing a different molecule, what it does, how it is made, and why it is so interesting. Written by experts in the field, the book is accessible and easy to read. It includes amusing anecdotes
While the boundaries between the areas of chemistry traditionally labeled as inorganic, organic and physical are gradually diffusing, the practical techniques adopted by workers in each of these areas are often radically different. The breadth and variety of research classed as "inorganic chemistry" is readily apparent from an inspection of some of the leading international journals, and can be quite daunting for newcomers to this domain who are likely to have only limited experience of the methodologies involved. This book has therefore been written to provide guidance for those unfamiliar with the techniques most often encountered in synthetic inorganic / metalorganic chemistry, with an emphasis on procedures for handling air-sensitive compounds. One chapter is devoted to more specialized techniques such as metal vapor synthesis, and a review of preparative methods for a selection of starting materials is included as an aid to those planning research projects. While this book is aimed primarily at postgraduate and advanced undergraduate students involved in inorganic research projects, synthetic organic chemists and industrial chemists will also find much useful information within its pages. Similarly, it serves as a useful reference source for materials and polymer scientists who wish to take advantage of recent progress in precursor synthesis and catalyst development.
Part of a series devoted to understanding the relationship between the chemistry of metals and life processes, the present volume offers contributions by 25 scientists covering mechanistic considerations, electron tunneling pathways, photoinduced and stereoselective effects in electron transfer reac
Thirty chapters provide a handbook-like treatment of magnesium and its function in the environment, its bioinorganic chemistry, its role for plants and in animal and human nutrition, its biochemistry and physiology, and its relation to human health and disease. The last 20 years have seen a prolifer
This 18-volume series is a true first. In a clear, concise, and highly organized manner, it provides an in-depth treatment of bond formation reactions categorized by element type. The series presents current knowledge in all areas of inorganic chemistry including chemistry of the elements, coordination compounds, donor-acceptor adducts, organometallic, polymer and solid-state material, and compounds relevant to bioinorganic chemistry. A unique index system provides users with several fast options for accessing information on forming any bond type, compound, or reaction. Coverage of both classical chemistry and the frontiers of today's research makes this series a valuable reference for years to come.
This book provides insights into the mechanisms of primary carbonization and reviews the graphitization of various carbon materials under applied pressures. It discusses the changes in the thermal-mechanical properties of carbon/carbon composites due to stress effects.
This book bridges the gap between theory and practice. It provides fundamental information on heterogeneous catalysis and the practicalities of the catalysts and processes used in producing ammonia, hydrogen and methanol via hydrocarbon steam reforming. It also covers the oxidation reactions in making formaldehyde from methanol, nitric acid from ammonia and sulphuric acid from sulphur dioxide. Designed for use in the chemical industry and by those in teaching, research and the study of industrial catalysts and catalytic processes. Students will also find this book extremely useful for obtaining practical information not available in more conventional textbooks.
Volume 17, entitled Lead: Its Effects on Environment and Health of the series Metal Ions in Life Sciences centers on the interrelations between biosystems and lead. The book provides an up-to-date review of the bioinorganic chemistry of this metal and its ions; it covers the biogeochemistry of lead, its use (not only as gasoline additive) and anthropogenic release into the environment, its cycling and speciation in the atmosphere, in waters, soils, and sediments, and also in mammalian organs. The analytical tools to determine and to quantify this toxic element in blood, saliva, urine, hair, etc. are described. The properties of lead(II) complexes formed with amino acids, peptides, proteins (including metallothioneins), nucleobases, nucleotides, nucleic acids, and other ligands of biological relevance are summarized for the solid state and for aqueous solutions as well. All this is important for obtaining a coherent picture on the properties of lead, its effects on plants and toxic actions on mammalian organs. This and more is treated in an authoritative and timely manner in the 16 stimulating chapters of Volume 17, which are written by 36 internationally recognized experts from 13 nations. The impact of this recently again vibrant research area is manifested in nearly 2000 references, over 50 tables and more than 100 illustrations (half in color). Lead: Its Effects on Environment and Health is an essential resource for scientists working in the wide range from material sciences, inorganic biochemistry all the way through to medicine including the clinic ... not forgetting that it also provides excellent information for teaching.
This book considers nickel in the environment and in aquatic systems and outlines its role for plants. It discusses the toxicology of nickel compounds and the role of nickel in carcinogenesis, focusing on the analysis of nickel in biological materials and the related difficulties.
This book facilitates a wider use of nuclear magnetic resonance in studies of paramagnetic species. It summarizes studies of magnetically coupled metalloproteins, of paramagnetic heme proteins, and of metal-porphyrin-induced dipolar shifts for conformational analysis.
This book provides a fundamental understanding of the basis of the theoretical treatment of electronic properties in graphite. It illustrates the wide range of topics of interest to researchers on carbon materials and stimulates further understanding of some of the phenomena involved.
This book discusses current techniques and instrumentation for cluster chemistry. It addresses both the experimental and theoretical aspects of gas-phase metal cluster reactivities, especially those pertaining to pollution removal, energetic reactions and corrosion and anticorrosion. These metal cluster systems have attracted enormous interest as they display a completely new class of physical, chemical, electronic, magnetic and catalytic properties. As these properties change with size and composition, it can thus be understood how their nature evolves from atoms to bulk solids. The book offers readers a basic understanding of the structural chemistry and reactivity of metal clusters in both gas-phase and wet chemistry. Further, the lessons they learn here regarding metal cluster chemistry will prepare researchers for the study of condensed phase dynamics that pertain to wet chemical synthesis, soft-landing deposition and cluster assembly.
This book provides comprehensive coverage of nanocomposite materials obtained by the sol-gel method, from synthesis to applications and including design tools for combining different properties. Sol-gel nanocomposites are of great interest in meeting processing and application requirements for the development of multifunctional materials. These materials are already commercialized for a number of applications from scratch-resistant and anti-adhesive coatings to optical materials with active and passive properties. Biomedical applications, holographic recordings, fuel cells and hydrogen storage, resists and catalysts are among the potential uses. The novel mechanical, optical and electronic properties of nanocomposite materials depend not only on the individual component materials, but also on their morphology and nanoscale interfacial characteristics. Sol-gel is a highly versatile method for obtaining both the matrix and the filler of the nanocomposite and for chemically adjusting the interface to optimize structure and properties. Although nanocomposites are widely discussed in the literature, the focus has been mainly on polymer nanocomposites. This book addresses nanocomposites based on inorganic or hybrid organic-inorganic matrices, with an emphasis on the scientific principles which are the basis for nanocomposite sol-gel synthesis and applications. A didactic approach is followed, with different topics developed from a fundamental point of view together with key examples and case studies. First comprehensive treatment of nanocomposites obtained by sol-gel methods Focuses on nanocomposites with inorganic and hybrid organic-inorganic matrices Describes design tools to optimize structure and properties for various applications Covers synthesis, processing, characterization, and modeling Uses first principles to describe the influence of interfacial characteristics on materials properties Presents case studies for both films and bulk applications Provides examples of products on the market, with descriptions of the scientific principles at the base of their success Includes contributions from recognized leaders in this multidisciplinary area.
This volume is an attempt to improve the understanding of the coordination chemistry and action of the biologically important compounds, also termed antibiotics, and to stimulate further research in this area, describing the properties of the biologically important compounds. |
You may like...
Un Grand Bordel - An RAF Air Gunner's…
Norman Lee, Geoffrey French
Paperback
R552
Discovery Miles 5 520
|