![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Lipids
Since their discovery over 60 years ago, eicosanoids have come to represent a diverse family of bioactive lipid modulators, including prostaglandins, thromboxanes, leukotrienes, lipoxins, isoprostanes, hepoxilins, hydroxy acids, epoxy and hydroxy fatty acids. This book contains conference presentations regarding the regulation of eicosanoid enzymes and, in particular, cyclooxygenases, lipoxygenases, and phospholipases. In addition, the latest evidence over the last seven years has led to the identification of a number of receptors for these bioactive lipids. The new field of isoprostanes is also represented. It has become increasingly evident that eicosanoids play a critical role in signal transduction, both in normal cells and in pathological processes. These aspects are discussed in relation to cellular events, such as apoptosis, angiogenesis, and cancer prevention and treatment.
Bioactive Carbohydrate Polymers is probably the first book dealing with the latest in the field of polysaccharides and related products and their biological activities, especially the immunological effects. The different chapters describe the structure and bioactivity of polysaccharides from plants used in traditional medicine in different parts of the world, especially China, Japan and Europe. The focus of the book is on immunologically active plant and seaweed polysaccharides, pharmacological activities of sulphated polysaccharides of animal and seaweed origin, and on possible activities of polysaccharides in our food. Methods for isolation and characterisation of the polymers with chemical and enzymatic methods is covered, as well as discussions on the different biological test-systems and the information they provide. This book will be useful to scientists and postgraduate students working with polysaccharides and their possible uses, and should be of interest for people working in the areas of chemistry, biology, pharmacy and medicine.
Lipidomics is an important aspect of personalized medicine in relation to nutrition and metabolism. This approach has become important due to the substantial presence of nutraceuticals in the market, since it gives personalized criteria on how to choose the right nutraceutical strategy for both prevention and for quality of life. This multi-disciplinary textbook uses a simple and practical approach to provide a comprehensive overview of lipidomics and their connection with health and nutrition. The text is divided into two parts: - Part 1 outlines the basics of lipidomics and focuses on the biochemical and nutritional aspects with descriptions of the analytical methods employed for the examination of cell membrane fatty acid composition. - Part 2 familiarizes the reader with the use of membrane lipidomic diagnostics in practical health care, using health conditions as examples to introduce the concept of lipidomic profiles in different physiological and pathological situations including prevention. Through the various properties of membrane lipidomics, readers will be able to combine the molecular status of the cell membrane with the evaluation of the subject for personalized nutritional and nutraceutical strategies. Membrane Lipidomics for Personalized Health will be beneficial to biologists, biochemists and medical researchers, as well as health care professionals, pharmacists, and nutritionists seeking in-depth information on the topic.
Now in its second edition, the Handbook of Lipid Bilayers is a groundbreaking work that remains the field's definitive text and only comprehensive source for primary physicochemical data relating to phospholipid bilayers. Along with basic thermodynamic data, coverage includes both dynamic and structural properties of phospholipid bilayers. It is an indispensable reference for users of bilayer model membranes and liposome delivery systems and for those interested in the biophysics of membrane structure. Each chapter in the second edition contains considerable amounts of explanation and elaboration, including, in many cases, extensive analysis of structural connections between the data. New in the Second Edition: Chapters on crystal structures of phospholipids include new structures and more comprehensive data on bond lengths, bond angles, and torsion angles-and all coordinates are Cartesian Wide-angle data is indexed whenever possible to characterize chain-packing modes in gel and crystalline lamellar phases Low-angle data are analyzed in terms of the lipid and water thicknesses Headgroup separations in electron density profiles for phospholipids are included, and a separate section is devoted to the in-depth analysis of electron density profiles that provides the most detailed structural information on fluid lamellar phases Phase diagrams of phospholipid mixtures are vastly expanded and have been redrawn in standardized format to aid intercomparison. Cholesterol, including ternary systems, is now featured. New sections on titration calorimetry, and much extended data on the temperature dependence of transfer rates The greatly expanded chapter on bilayer-bilayer interactions features new and detailed information on the components of interbilayer pressures
Inositol, in its native or lipid derived forms, serves as a master building block which, when phosphorylated, leads to the construction of more than 30 unique isomeric forms that are employed in vital but diverse regulatory roles in cells. In Inositol Phosphates and Lipids: Methods and Protocols, expert researchers introduce the basic methodological tools to measure inositol lipids and phosphates and also describe new approaches that have become available in the last 10 years, including RNA-silencing and the use of fluorescently labeled PH-domains to measure inositides in real-time in live cells, new sensitive methods to measure mass of both phosphates and lipids, as well as protocols involving inositol pyrophosphates. Written in the highly successful Methods in Molecular Biology(TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes sections, detailing tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Inositol Phosphates and Lipids: Methods and Protocols compiles many of the techniques that underscore phosphorylated inositol cell biology in one convenient guide.
The 15th International Symposium on Plant Lipids was held in Okazaki, Japan, in May 12th to 17th, 2002, at the Okazaki Conference Center. The Symposium was organized by the Japanese Organizing Committee with the cooperation of the Japanese Association of Plant Lipid Researchers. The International Symposium was successful with 225 participants from 29 countries. We acknowledge a large number of participants from Asian countries, in particular, from China, Korea, Malaysia, Taiwan, Thailand and the Philippines, presumably because this was the fIrst time that the International Symposium on Plant Lipids was held in Asia. We also acknowledge a number of scientists from Canada, France, Germany, UK and USA, where plant lipid research is traditionally very active. The Symposium provided an opportunity for presentation and discussion of 68 lectures and 93 posters in 11 scientific sessions, which together covered all aspects of plant lipid researches, such as the structure, analysis, biosynthesis, regulation, physiological function, environmental aspects, and the biotechnology of plant lipids. In memory of the founder of this series of symposia, the Terry Galliard Lecture was delivered by Professor Ernst Heinz from Universitat: Hamburg, Germany. In addition, special lectures were given by two outstanding scientists from animal lipid fields, Professor James Ntambi from University of Wisconsin, USA, and Dr. Masahiro Nishijima from the National Institute for Infectious Diseases, Japan. To our great honor and pleasure, the session of Lipid Biosynthesis was chaired by Dr.
This second edition volume expands all chapters of the previous edition, which have been enhanced to cover the most recent developments, the current state of method research, and applications. Additional protocols were added to examine lipid-protein interactions by mass spectrometry, to use protein microarrays to investigate large sets of various proteins, to study membrane protein dynamics by UV resonance Raman spectroscopy, to analyze peptide-induced pore formation in membranes, and to investigate folding and insertion of membrane proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Lipid-Protein Interactions: Methods and Protocols, Second Edition is an essential resource for all researchers who are interested in obtaining up-to-date and comprehensive information about membrane structure and function.
Lipid Second Messengers provides detailed methodology for analysis of various lipid signaling pathways. Authoritative contributors explain the factors that regulate lipid second messenger production by agonist-activated enzymes and examine their products. Topics discussed include procedures used to measure lipid-derived mediators such as lysophospholipids, arachidonic acid, eicosanoids, anandamide, and ceramides, and the enzymes responsible for generating these messengers, such as phospholipases, prostaglandin endoperoxide synthases, and sphingomyelinase.
Advances in Biomembranes and Lipid Self-Assembly, Volume 29, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes, and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, the book discusses how lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Chapters in this volume present both original research and comprehensive reviews written by world leading experts and young researchers.
Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of proteina "lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid domains within the membrane.
This volume expands upon the previous edition with current, detailed protocols for investigating membranes and their component lipids in artificial membranes, cells, and in silico. Chapters focus on properties of the component lipids, membranes and their biophysical properties, fluorescent probes for studying membranes, sample preparation, physical techniques to study membrane composition, properties , and function, behavior of cholesterol within a bilayer and examination of cholesterol-dependent phase separation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Methods in Membrane Lipids, Second Edition seeks to aid scientist in further study into membrane lipids.
As scientist begin to understand the complexity of lipid signaling and its roles in plant biology, there is an increasing interest in their analysis. Due to the low abundancy and transient nature of some of these hydrophobic compounds, this is not always easy. In Plant Lipid Signaling Protocols, expert researchers in the field detail experimental approaches by which plant signaling lipids can be studied. These methods and techniques include analysis of plant signaling lipids, including detailed protocols to detect various relevant compounds by targeted or non-targeted approaches; to assay relevant enzyme activities in biological material or using recombinant enzymes; to test for specific binding of signaling lipids to protein partners; or to visualize signaling lipids or lipid-derived signals in living plant cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Lipid Signaling Protocols aids plant researchers in the continuing to study the roles of lipid signals.
This volume focuses on recent advances in the biochemical and molecular analysis of different families of phospholipases in plants and their roles in signaling plant growth, development and responses to abiotic and biotic cues. The hydrolysis of membrane lipids by phospholipases produces different classes of lipid mediators, including phosphatidic acid, diacylglycerol, lysophospholipids, free fatty acids and oxylipins. Phospholipases are grouped into different families and subfamilies according to their site of hydrolysis, substrate usage and sequence similarities. Activating one or more of these enzymes often constitutes an early, critical step in many regulatory processes, such as signal transduction, vesicular trafficking, secretion and cytoskeletal rearrangements. Lipid-based signaling plays pivotal roles in plant stress responses, cell size, shape, growth, apoptosis, proliferation, and reproduction.
Recent studies have shown that cells from adipose tissue are capable of trafficking to tumors, thus enabling paracrine action of adipokines from within the tumor microenvironment. Increased tumor vascularization, immune system suppression and direct effects on malignant cell survival and proliferation have been investigated as mechanisms regulated by adipokines. The goal of this book is to discuss data pointing to the role of adipose tissue in cancer and to dissect individual mechanisms through which adipose tissue excess or restriction could influence cancer progression.
Eicosanoids are a diverse group of biologically active molecules derived from polyunsaturated fatty acid precursors. This volume draws together for the first time a series of overviews on the biosynthesis and functional significance of these and related compounds in a wide range of animals, plants, and micro-organisms. All chapters are written by recognized experts in their fields, and many make use of significant amounts of unpublished materials. This volume is aimed at advanced undergraduates and at researchers interested in lipid biochemistry and general plant and animal biology. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described. The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being as important for life as proteins, sugars, and genes. This significantly expanded and revised edition takes into account the tremendous amount of knowledge gained over the past decade. In addition, the book now includes more tutorial material on the biochemistry of lipids and the principles of lipid self-assembly. The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences. From the reviews of the first edition: "This is a highly interesting book and a pleasure to read. It represents a new and excellent pedagogical introduction to the field of lipids and the biophysics of biological membranes. I reckon that physicists and chemists as well as biologists will benefit from this approach to the field and Mouritsen shows a deep insight into the physical chemistry of lipids." (Goeran Lindblom, Chemistry and Physics of Lipids 2005, vol. 135, page 105-106) "The book takes the reader on an exciting journey through the lipid world, and Mouritsen attracts the attention with a lively style of writing ... . a comprehensive view of the 'lipid sea' can be easily achieved, gaining the right perspectives for envisaging future developments in the nascent field of lipidomics." (Carla Ferreri, ChemBioChem, Vol. 6 (8), 2005)
Biomembranes consist of molecular bilayers with many lipid and protein components. The fluidity of these bilayers allows them to respond to different environmental cues by changing their local molecular composition as well as their shape and topology. On the nanometer scale, this multi-responsive behavior can be studied by molecular dynamics simulations, which provide both snapshots and movies of the bilayer conformations. The general conceptual framework for these simulations is provided by the theory of curvature elasticity. The latter theory also explains the behavior of giant vesicles as observed by optical microscopy on the micrometer scale. The present volume describes new insights as obtained from recent developments in analytical theory, computer simulations, and experimental approaches. The seven chapters of the volume are arranged in a bottom-up manner from smaller to larger scales. These chapters address the refined molecular dynamics and multiscale modeling of biomembranes, their morphological complexity and adhesion, the engulfment and endocytosis of nanoparticles, the fusion of giant unilamellar vesicles, as well as recent advances in microfluidic technology applied to model membranes.
Phosphoinositides play a major role in cellular signaling and membrane organization. During the last three decades we have learned that enzymes turning over phosphoinositides control vital physiological processes and are involved in the initiation and progression of cancer, inflammation, neurodegenerative, cardiovascular, metabolic disease and more. In two volumes, this book elucidates the crucial mechanisms that control the dynamics of phosphoinositide conversion. Starting out from phosphatidylinositol, a chain of lipid kinases collaborates to generate the oncogenic lipid phosphatidylinositol(3,4,5)-trisphosphate. For every phosphate group added, there are specific lipid kinases - and phosphatases to remove it. Additionally, phospholipases can cleave off the inositol head group and generate poly-phosphoinositols, which act as soluble signals in the cytosol. Volume II extends into the role of phosphoinositides in membrane organization and vesicular traffic. Endocytosis and exocytosis are modulated by phosphoinositides, which determine the fate and activity of integral membrane proteins. Phosphatidylinositol(4,5)-bisphosphate is a prominent flag in the plasma membrane, while phosphatidylinositol-3-phosphate decorates early endosomes. The Golgi apparatus is rich in phosphatidylinositol-4-phosphate, stressed cells increase phosphatidylinositol(3,5)-bisphosphate, and the nucleus has a phosphoinositide metabolism of its own. Phosphoinositide-dependent signaling cascades and the spatial organization of distinct phosphoinositide species are required in organelle function, fission and fusion, membrane channel regulation, cytoskeletal rearrangements, adhesion processes, and thus orchestrate complex cellular responses including growth, proliferation, differentiation, cell motility, and cell polarization.
Presents a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. Emphasizes the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Shows how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nano-technology and biomedicine are also described.
For years lipids have fascinated cell biologists and biochemists due to their profound effects on cell function. "Cellular Lipid Metabolism" highlights new concepts and recent findings, but also reviews important discoveries made in the past. Outstanding international experts contribute 13 chapters on the genetics, molecular and cell biology of lipids. Presenting analyses at the molecular level they reveal the principles by which cellular lipid metabolism functions. Further, numerous intriguing observations that cannot yet be explained are identified, stimulating the readers to future studies. This book provides an invaluable source of information for biomedical researchers in energy metabolism, vascular biology, endocrinology and lipidology.
Lipid Signaling Protocols assembles in a single volume the various tools and methodologies needed by the interested investigator to unravel lipid dependent signaling and cell function. Divided into two convenient sections, the volume begins by summarizing the physical properties of hydrophobic metabolites as well as the physical methodologies used for their analysis, which leads to the second section and its selection of biological methods, focused around the most relevant lipids, their corresponding metabolizing enzymes and the recognition proteins. Following the highly successful Methods in Molecular Biology (TM) series format, the chapters provide readily reproducible laboratory protocols, lists of necessary materials and reagents, and the tips on troubleshooting and avoiding known pitfalls. Contributed to by top researchers in the field, Lipid Signaling Protocols is an essential resource for both experienced and novice researchers who desire a better understanding of the application of physical methodologies in the context of lipid signaling and lipid metabolism in cell biology.
The scientific advances in the physiology and pathophysiology of adipose tissue over the last two decades have been considerable. Today, the cellular and molecular mechanisms of adipogenesis are well known. In addition, adipose tissue is now recognized as a real endocrine organ that produces hormones such as the leptin acting to regulate food intake and energy balance in the central nervous system, a finding that has completely revolutionized the paradigm of energy homeostasis. Other adipokines have now been described and these molecules are taking on increasing importance in physiology and pathophysiology. Moreover, numerous works have shown that in obesity, but also in cases of lipodystophy, adipose tissue was the site of a local low-grade inflammation that involves immune cells such as macrophages and certain populations of lymphocytes. This new information is an important step in the pathophysiology of both obesity and related metabolic and cardiovascular complications. Finally, it is a unique and original work focusing on adipose tissue, covering biology and pathology by investigating aspects of molecular and cellular biology, general, metabolic, genetic and genomic biochemistry.
Phosphoinositides play a major role in cellular signaling and membrane organization. During the last three decades we have learned that enzymes turning over phosphoinositides control vital physiological processes and are involved in the initiation and progression of cancer, inflammation, neurodegenerative, cardiovascular, metabolic disease and more. In two volumes, this book elucidates the crucial mechanisms that control the dynamics of phosphoinositide conversion. Starting out from phosphatidylinositol, a chain of lipid kinases collaborates to generate the oncogenic lipid phosphatidylinositol(3,4,5)-trisphosphate. For every phosphate group added, there are specific lipid kinases - and phosphatases to remove it. Additionally, phospholipases can cleave off the inositol head group and generate poly-phosphoinositols, which act as soluble signals in the cytosol. Volume I untangles the web of these enzymes and their products, and relates them to function in health and disease. Phosphoinositide 3-kinases and 3-phosphatases have received a special focus in volume I, and recent therapeutic developments in human disease are presented along with a historical perspective illustrating the impressive progress in the field.
Although previously thought to be merely passive structural components, membrane lipids have recently been found to be actively involved in cellular transport and signal transduction processes. Clear protocols for the study of membrane lipid properties, cellular transport or signal transduction are presented in this manual. Following a short introduction to membrane lipids, techniques for the isolation and extraction of membrane fractions, the analysis of the lipid composition, lipid turnover, and the involvement in signal transduction as well as the preparation of liposomes are described.
Interest in and emphasis upon different aspects of the sphingolipids have, in general, followed the biochemical developments of the day. The early inves- tigators were preoccupied principally with the isolation of "pure" compounds and structural elucidation. This historical perspective is found in the discus- sion presented in Chapter 1 (Section 1. 1. 2 and Table III). Still, the isolation and structural characterization of glycolipids are the basic foundation of all our knowledge of enzymology, immunology, and cell biology. Recent infor- mation obtained on structure has greatly affected the interpretation of various phenomena related to glycolipids. New structures suggest a new role of gly- colipids as antigens and receptors. Ten years ago, only four neutral glycolipids and two gangliosides were known in human erythrocytes. We now know structures of at least twenty additional neutral glycolipids and ten additional gangliosides in human erythrocytes that are known to be important blood group, heterophil, and autoantigens. Erythrocytes are only one example of a cell type whose glycolipid profile has been extensively studied. Our defective knowledge in immunology and cell biology may be due to incomplete un- derstanding of structural chemistry. Modern methodology based on methyla- tion analysis, mass spectrometry, and enzymatic degradation has supple- mented classical analysis based on clorimetry. Nuclear magnetic resonance spectroscopy is still in the development stage, but will eventually replace var- ious chemical analyses. However, important future studies should be directed toward elucidating the organizational structure of glycolipids in membranes. |
You may like...
Building Back Better After the 2015…
Chandra Bahadur Shrestha
Hardcover
R3,340
Discovery Miles 33 400
|