![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > Lipids
Lipids are functionally versatile molecules. They have evolved from relatively simple hydrocarbons that serve as depot storages of metabolites and barriers to the permeation of solutes into complex compounds that perform a variety of signalling functions in higher organisms. This volume is devoted to the polar lipids and their constituents. We have omitted the neutral lipids like fats and oils because their function is generally to act as deposits of metabolizable substrates. The sterols are also outside the scope of the present volume and the reader is referred to volume 28 of this series which is the subject of cholesterol. The polar lipids are comprised of fatty acids attached to either glycerol or sphingosine. The fatty acids themselves constitute an important reservoir of substrates for conversion into families of signalling and modulating molecules including the eicosanoids amongst which are the prostaglandins, thromboxanes and leucotrienes. The way fatty acid metabolism is regulated in the liver and how fatty acids are desaturated are subjects considered in the first part of this volume. This section also deals with the modulation of protein function and inflammation by unsaturated fatty acids and their derivatives. New insights into the role of fatty acid synthesis and eicosenoid function in tumour progression and metastasis are presented.
Featuring practical strategies and exciting experiments, Teaching Innovations in Lipid Science addresses lipid education at a range of levels from the novice to the graduate student and teacher. Peer-reviewed contributions from internationally known specialists, describe several methods and approaches designed to create new lipid courses, modify existing courses, and serve as a basis for pursuing novel avenues of instruction. Divided into two sections, the first focuses on teaching strategies and outlines some of the barriers that lipid science specialists face when transmitting accurate information. It emphasizes the development and implementation of creative programs that foster interest in lipid science, and presents novel problem-solving approaches. It discusses strategies for involving and evaluating independent study students and explains the successful use of sample cards to teach oilseed and cereal processing. This section also provides generalized accounts of biotechnology and crop improvement and isoprenoid biochemistry, including improvement of oilseed crops and tips on explaining DNA science and crop biotechnology. The second section begins with simple demonstrations on the physical properties of lipids suitable for middle- and high school students. It follows with more complex experiments on analyzing lipids in food oils, plasma, and milk utilizing thin layer chromatography, gas chromatography, and high performance liquid chromatography. Contributions include information on convenient enzyme test kits with exercises that can translate to a lab course beginning with chromatographic methods for lipid analysis. The final chapter presents theory and experiments for studying lipid metabolism in the plastid by describing preparation methods, studying metabolite uptake, and pathway analysis.
Lipid Signaling Protocols assembles in a single volume the various tools and methodologies needed by the interested investigator to unravel lipid dependent signaling and cell function. Divided into two convenient sections, the volume begins by summarizing the physical properties of hydrophobic metabolites as well as the physical methodologies used for their analysis, which leads to the second section and its selection of biological methods, focused around the most relevant lipids, their corresponding metabolizing enzymes and the recognition proteins. Following the highly successful Methods in Molecular Biology (TM) series format, the chapters provide readily reproducible laboratory protocols, lists of necessary materials and reagents, and the tips on troubleshooting and avoiding known pitfalls. Contributed to by top researchers in the field, Lipid Signaling Protocols is an essential resource for both experienced and novice researchers who desire a better understanding of the application of physical methodologies in the context of lipid signaling and lipid metabolism in cell biology.
This fully updated edition explores methods involving sphingosine-1-phosphate (S1P), a bioactive lysophospholipid which has become the focus of much research interest as it has widespread developmental and physio-pathological actions, controlling events within the nervous, reproductive, gastrointestinal, vascular, respiratory, and immune systems, in addition to having a prominent role in cancer, early mammalian embryogenesis, and stem cells. Here, worldwide experts in the S1P field describe in-depth techniques in an array of cell types and with various physiological applications, showcasing the important effects of S1P in development and in physiopathology. As a volume in the Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the relevant materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips for troubleshooting and avoiding known pitfalls. Authoritative and timely, Sphingosine-1-Phosphate: Methods and Protocols, Second Edition is another key resource for scientists working in this fast-moving and dynamic field.
Advances in Biomembranes and Lipid Self-Assembly, Volume 37 provides a comprehensive compilation of recent developments in a field that is in a state of rapid growth as new experimental and theoretical techniques are used on many problems, both old and new. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics, with timely articles written by experts. New chapters in this updated release include Engulfment of particles by vesicles containing curved membrane proteins coupled with active cytoskeletal forces, Interaction of cells with different types of nanostructured surfaces, Solid-supported lipid bilayer formation by solvent exchange, and more.
I organized this symposium, "Molecular Immunology of Complex Carbohydrates-2 (MICC-2)," at the Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan th between August 28-September 2, 1999, as a satellite meeting of the 15 International Glycoconjugate Conference (held August 22-27 in Tokyo, Japan). I also held a Taiwan- Canada Glycobiology Workshop after this meeting at the Institutes of Biological Chemistry and Chemistry. To promote glycobiology in Taiwan, I offered a Complexs Carbohydrate & Medicine-2 workshop at the Glyco- Research Laboratory, College of Medicine, Chang- Gung University, Kwei-san, Tao-yuan, Taiwan before the MICC-2 symposium. The lecture and poster materials of these three meetings are collected in these proceedings, which are divided into five Sections and two Appendixes. Section I, entitled "Protein-Carbohydrate Interactions of Plant and Animal Lectins," provides current concepts of lectin-carbohydrate interactions; classification of lectins, based on amino acid sequences, molecular structures, and lectin affinity for carbohydrates. However, the relationships between amino acid sequences and carbohydrate affinity of lectins have to be more thoroughly characterized. The reviews on animal lectins in this Section explore new areas of lectins. Section II, "Aspects of Structure and Antigenicity of Glycoconjugates," provides important information on structural concepts of glyco- immunology. "Glycotope Expression (Glycosylation), Metabolism and Functions," which play important roles in life processes, are discussed in Section III. Four articles on advances in knowledge on structural roles of glycans and treatment of cancer are discussed in Section IV.
Knowledge of cholesterol and its interaction with protein molecules is of fundamental importance in both animal and human biology. This book contains 22 chapters, dealing in depth with structural and functional aspects of the currently known and extremely diverse unrelated families of cholesterol-binding and cholesterol transport proteins. By drawing together this range of topics the Editor has attempted to correlate this broad field of study for the first time. Technical aspects are given considerable emphasis, particularly in relation cholesterol reporter molecules and to the isolation and study of membrane cholesterol- and sphingomyelin-rich "raft" domains. Cell biological, biochemical and clinical topics are included in this book, which serve to emphasize the acknowledged and important benefits to be gained from the study of cholesterol and cholesterol-binding proteins within the biomedical sciences and the involvement of cholesterol in several clinical disorders. It is hoped that by presenting this topic in this integrated manner that an appreciation of the fact that there is much more that needs to be taken into account, studied and understood than the widely discussed "bad and good cholesterol" associated, respectively, with the low- and high-density lipoproteins, LDL and HDL. Content Level Professional/practitioner
This text addresses critical topics in the expanding market and production for lipids. It combines novel and traditional methods from technological and biological perspectives to achieve the most effective pathways for production of modified lipids. The book is organized into three sections exploring development, new production methods and successful products and uses.
"Provides a comprehensive review of the major technologies and applications of lipids in food and nonfood uses, including current and future trends. Discusses the nature of lipids, their major sources, and role in nutrition."
This fully updated book presents an account of areas of utility, techniques, and bioinformatic advancements in the field of lipidomics. Beginning with protocols for lipid isolation and extraction, the volume continues with techniques from extractive mass spectrometry to imaging mass spectrometry methods allowing localization of lipids in tissues. These protocols have been complemented by methods addressing specific problems from membranes, fractionated subcellular compartments or organelles to whole organisms. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, as well as tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Lipidomics: Methods and Protocols, Second Edition serves as an ideal guide for biochemists, molecular biologists, neuroscientists, vision research scientists, as well as all biomedical researchers with interest in disease discovery and drug development.
This volume focuses on recent advances in the biochemical and molecular analysis of different families of phospholipases in plants and their roles in signaling plant growth, development and responses to abiotic and biotic cues. The hydrolysis of membrane lipids by phospholipases produces different classes of lipid mediators, including phosphatidic acid, diacylglycerol, lysophospholipids, free fatty acids and oxylipins. Phospholipases are grouped into different families and subfamilies according to their site of hydrolysis, substrate usage and sequence similarities. Activating one or more of these enzymes often constitutes an early, critical step in many regulatory processes, such as signal transduction, vesicular trafficking, secretion and cytoskeletal rearrangements. Lipid-based signaling plays pivotal roles in plant stress responses, cell size, shape, growth, apoptosis, proliferation, and reproduction.
This third edition provides new and updated chapters detailing preparation of liposomes, physicochemical characterization of liposomes, lipid analysis, drug encapsulation, surface modification, stimuli response as well as cellular interaction, and biodistribution. Also included is an updated chapter on the history and evolution of the field of liposomology. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Liposomes: Methods and Protocols, Third Edition aims to serve as a reference for graduate students, post-doctoral researchers as well as established investigators utilizing lipid-based systems.
Sphingolipids are lipid components of the plasma membrane of eukaryotic cells with an important function in signaling mechanisms in the cell. This book provides insight into the physiological and pathophysiological role of sphingolipids and in particular its derivative ceramide. The function of Sphingolipids in cell signaling with regard to infectious and lung diseases, cancer, cardiovascular diseases and neuropsychiatric disorders are described and treated in distinct parts. Together with Volume 215 from the same Editors, the collection represents a unique, comprehensive work on Sphingolipids, providing information on both: Sphingolipid basic biology as well as its important function in a (patho)physiological context. The book is written for scientists in pharmacology, biochemistry and cell biology with a focus on biomedical research as well as for clinicians in pharmacology, oncology, cardiology, neurology and infectious disease. "
This well-known and highly successful book was first published in 1973 and has been completely re-written in subsequent editions (published in 1982 and 2003). This new Fourth Edition has become necessary because of the pace of developments in mass spectrometry of intact lipids, which has given recognition of lipid analysis and 'lipidomics' as a distinct science. To bring the book up to date with these developments, author William W. Christie is joined by co-author Xianlin Han. Although devoting considerable space to mass spectrometry and lipidomics, Lipid analysis remains a practical guide, in one volume, to the complexities of the analysis of lipids. As in past editions, it is designed to act as a primary source, of value at the laboratory bench rather than residing on a library shelf. Lipid analysis deals with the isolation, separation, identification and structural analysis of glycerolipids, including triacylglycerols, phospholipids, sphingolipids, and the various hydrolysis products of these. The chapters follow a logical sequence from the extraction of lipids to the isolation and characterization of particular lipid classes and of molecular species of each, and to the mass spectrometric analysis of lipids and lipidomics. The new influence of mass spectrometry is due mainly to the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Most emphasis in this book is placed on ESI, which is enabling structural characterization of different lipid classes and the identification of novel lipids and their molecular species.
Lipids m the nervous system are major components of the m- branes. The presence of glycolipids in high concentrations is unique for the nervous system. Recent discoverres of the functronal and pathological importance of lipids such as diacylglycerols, polyphosphoinositides, prostaglandins, leukotrienes, docosahexaenoic acid, platelet activating factor, and gangliosides have markedly increased the number of publications on nervous system lipids. Many new methods have been developed. Thus, there IS a need for this volume that is dedicated to that methodo- gy. This volume places all of the methods for lipids into perspective with recommendations concerning the selection of a method for a specific purpose. Lloyd A. Horrocks vii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preface to the Series vi Preface.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*............................... xix List of Contributors Lipid Extraction Norman S. Radin 1 1. Introduction ...................................................... ......................................... 5 2. Properties of Solvents 2.1. Ethers ........................................................ 6 8 2.2. Alcohols ..................................................... 9 2.3. Halocarbons ................................................ 9 2.4. Hydrocarbons ............................................. 2.5. Miscellaneous Solvents ................................ 10 .................................... 10 3. Storage of Lipid Extracts 14 4. Homogenizers .................................................. ..... 15 5. Separating the Extract from the Tissue Residue 15 5.1. Use of Filtration .......................................... 16 5.2. Centrifugation ............................................ .............. 17 6. Removing Nonlipids from Lipid Extracts 6.1. Removal of Nonlipids by Evaporation and Reextraction ............................................... 17 .................... 17 6.2. Prewashing the Tissue Sample.. 6.3. Removal of Nonlipids by Precipitating the Lipids with the Proteins ............................... 18 ............................ 19 6.4. Liquid/Liquid Partitioning .................. 19 6.5. Removal of Nonlipids by Dialysis 6.6. Separation from Nonlipids by Changing a 21 Partition Constant .......................................
This volume explores analytical methods to study complex lipid mixtures from plants and algae. The chapters in this book are organized into five parts and cover topics such as basic methods of lipid isolation and analysis; mass spectrometry and NMR analysis; lipid isolation and analysis from plant tissues, cell compartments and organelles; lipid signaling, lipid-protein interactions, and imaging; and lipid databases. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Plant Lipids: Methods and Protocols is a valuable guide for experienced researchers and undergraduate, graduate, and Ph.D. students. This book is also an excellent resource for novice scientists with little to no experience in lipid experiments who are interested in approaching this field experimentally.
This book represents the proceedings of a Satellite Symposium of the XIth International Congress of Biochemistry on "Control of Membrane Fluidity" which was held on July 7, 1979 at the Charles H. Best Institute, University of Toronto, Toronto, Canada. The meeting was organized by M. Kates and A. Kuksis and was supported by the International Congress of Biochemistry. The purpose of the meeting was to review recent progress in many different areas of investigation bearing on the role of lipids in the structural and functional property of the cell membrane commonly referred to as fluidity. The aim was to emphasize the factors controlling membrane fluidity as studied in appropriate in vitro and in vivo experiments. The Symposium included invited review papers and short papers offered by discussants. In assem. bling the book no distinction has been made between the two types of presentations, nor has any significance been attached to the chronological order of their presentation in the Symposium. As a result it was possible to provide a much more coherent and continuous presentation than that available at the meeting."
Advances in Biomembranes and Lipid Self-assembly, Volume 31, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for the study of cell membranes, lipid model membranes and lipid self-assemblies, from the micro- to the nanoscale. As planar lipid bilayers are widely studied due to their ubiquity in nature, this book presents research on their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, the book discusses how lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Chapters in this volume present both original research and comprehensive reviews written by world leading experts and young researchers.
This book provides coverage of all aspects of lipid biochemistry and is intended for undergraduates, although it will also be useful for postgraduates and research workers as a first reference. This fourth edition has been rewritten and restructured to incorporate recent advances and to present a broader range of material. The organization of the content is based on an approach which classifies lipids primarily in terms of their functions in living organisms, rather than according to chemical structure. The first chapters deals with definitions, terminology and chemical classifications, and the second with isolation, separation and detection of lipids. Subsequent chapters, each of which incorporates a brief outline of the lipids, then discuss their biochemistry and functions. A feature of this edition is a more detailed treatment of the nutritional and chemical aspects of lipids. The book takes examples from a wide range of living organisms, including microorganisms and higher plants, as well as animals. The book is illustrated and cross-referenced for the convenience of the reader.
In this book, renowned scientists describe how cholesterol interacts with various proteins. Recent progress made in the high-resolution visualization of cholesterol-protein interactions using crystallography and cryogenic electron microscopy has substantially advanced the knowledge of critical features. These features enable specific recognition of the cholesterol molecule by proteins, a process that was built on earlier studies using binding assays, computational modeling and site-directed mutagenesis. Direct Mechanisms in Cholesterol Modulation of Protein Function offers comprehensive insights into the current understanding of cholesterol-driven modulation of protein function via direct sensing. Its nine chapters are organized into two distinct parts. In the first part, the chapters introduce the reader to the general characteristics of cholesterol binding sites in proteins. This part starts with a tour into common cholesterol recognition motifs, followed by an overview of the major classes of steroid-binding proteins. It then continues with two chapters that present a comprehensive analysis of molecular and structural characteristics of cholesterol binding sites in transmembrane and soluble protein domains. In the second part of the book, examples of cholesterol binding sites and consequences of specific cholesterol recognition for protein function are presented for G protein-coupled receptors, ion channels and cholesterol-transporting proteins. The book is valuable for undergraduate and graduate students in biochemistry and nutrition, as well as basic science and medical researchers with a keen interest in the biophysical properties of cholesterol and physiological consequences of cholesterol presence in biological systems.
This detailed book examines experimental approaches used to investigate the regulation and function of phosphoinositides (PtdInsP), rare eukaryotic phospholipids with a broad role in biological processes such as signal transduction, cell migration and adhesion, cell growth, subcellular organization, and membrane trafficking. The combination of complementary biochemical, mass spectrometry, and imaging methods are instrumental for the detection and quantification of PtdInsP species, as well as induced dimerization methods, affinity precipitation or co-sedimentation with liposomes, protein insertion within lipid bilayers, and enzymatic assays, or through emerging methods like native mass spectrometry and microfluidics, all of which are touched upon in this volume. Written in the highly successful Methods in Molecular Biology format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Phosphoinositides: Methods and Protocols provides detailed methodology for both specialist and novice researchers on a variety of complementary methods that have been instrumental in dissecting the regulation, dynamics, and function of PtdInsPs.
Lipidomics is an important aspect of personalized medicine in relation to nutrition and metabolism. This approach has become important due to the substantial presence of nutraceuticals in the market, since it gives personalized criteria on how to choose the right nutraceutical strategy for both prevention and for quality of life. This multi-disciplinary textbook uses a simple and practical approach to provide a comprehensive overview of lipidomics and their connection with health and nutrition. The text is divided into two parts: - Part 1 outlines the basics of lipidomics and focuses on the biochemical and nutritional aspects with descriptions of the analytical methods employed for the examination of cell membrane fatty acid composition. - Part 2 familiarizes the reader with the use of membrane lipidomic diagnostics in practical health care, using health conditions as examples to introduce the concept of lipidomic profiles in different physiological and pathological situations including prevention. Through the various properties of membrane lipidomics, readers will be able to combine the molecular status of the cell membrane with the evaluation of the subject for personalized nutritional and nutraceutical strategies. Membrane Lipidomics for Personalized Health will be beneficial to biologists, biochemists and medical researchers, as well as health care professionals, pharmacists, and nutritionists seeking in-depth information on the topic.
Advances in Biomembranes and Lipid Self-Assembly, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. Planar lipid bilayers are widely studied due to their ubiquity in nature and find their application in the formulation of biomimetic model membranes, and in the design of artificial dispersion of liposomes. Moreover, lipids self-assemble into a wide range of other structures, including micelles and the liquid crystalline hexagonal and cubic phases. Consensus has been reached that curved membrane phases do play an important role in nature as well, especially in dynamic processes, such as vesicles fusion and cell communication. Self-assembled lipid structures have enormous potential as dynamic materials ranging from artificial lipid membranes to cell membranes, from biosensing to controlled drug delivery, from pharmaceutical formulations to novel food products to mention a few. An assortment of chapters in this volume represents both original research as well as comprehensive reviews written by world leading experts and young researchers.
In the last decade, research on platelet-activating factor (PAF) has expanded exponentially. Previous conferences on PAF in Paris, 1983, and the subsequent conferences in Gatlinburg, Ten nessee, Tokyo, Snowbird, Utah, and Berlin, at three-yearly intervals, have chronicled the devel opments in the field ofPAF. This volume records the proceedings of the Fifth International Con gress on PAF and Related Lipid Mediators, held at the Free University Medical Hospital Ben jamin Franklin in Berlin, from September 12-16, 1995. We are very much indebted to Free Uni versity Berlin for providing tremendous facilities and financial support. It was a great pleasure to have positive and generous input from the German Science Council (DFG), Bonn, Germany, and British.Biotech, Oxford, United Kingdom. Their support was crucial in making the congress a scientific success. Twenty other organizations provided additional financial support, for which we extend our deepest appreciation. The editors would like to thank all of those who participated in this congress and the authors for their contributions. The organization and planning of the Berlin Congress were carried out by an organizing committee. We gratefully acknowledge the support and assistance of the organizing commit tee members, especially Renate Nigam and Renate Roux for their untiring efforts to make the congress successful. Many colleagues also supported the congress with dedication, hard work, and expert input. We are grateful to them. We also wish to acknowledge the support of G. Sravan Kumar and Louis Kock for their efforts in producing this volume."
Recent advances in our understanding of the fundamental role of bioactive lipids in normal and abnormal physiology was the theme of the XVlth International Spring Sympo- 6-9, 1996 at the George Washington University School sium on Health Sciences held on May of Medicine in Washington, D.C. Over 250 participants shared their latest findings on fundamental mechanisms in lipid metabolism, transport, and signal transduction. Most of the papers presented at the plenary sessions have been collected in this volume, which is divided into seven parts. The focus of Part I is on the new roles that fatty acids and esters play in cellular function. These activities include regulation of gene expression, control of eicosanoid-me- diated responses, and intracellular calcium sequestration. Most biological effects of fatty acids, esters, and phospholipids are transmitted via the interaction of these lipid molecules with specific lipid binding proteins. The chapters in Part II detail the involvement of these in the transport of fatty acids, fatty acyl CoA esters, and phospholipids, and in the proteins modulation of the fatty acid-induced activation of the peroxisome proliferator-activated receptors. The study of arachidonic acid metabolism continues to be the subject of intense interest and research. A number of studies in Part III deal with the substantial differences between the constitutive prostaglandin H synthase isozyme (PGHS-l or COX-I) and the inducible form PGHS-2 (COX-2) regarding compartmentation, control, and expression. |
![]() ![]() You may like...
Asia Pacific Dynamism 1550-2000
Heita Kawakatsu, A.J.H. Latham
Hardcover
R4,489
Discovery Miles 44 890
The State, Regulation and the Economy…
Lars Magnusson, Jan Ottosson
Hardcover
R3,181
Discovery Miles 31 810
|