![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
Nanomaterials for Electrocatalysis provides an overview of the different types of nanomaterials, design principles and synthesis protocols used for electrocatalytic reactions. The book is divided into four parts that thoroughly describe basic principles and fundamental of electrocatalysis, different types of nanomaterials used, and their electrocatalytic applications, limitations and future perspectives. As electrochemical systems containing nanomaterials, with relevance to experimental situation, yield better results, this book highlights new information and findings.
Hybrid Nanofluids: Preparation, Characterization and Applications presents the history of hybrid nanofluids, preparation techniques, thermoelectrical properties, rheological behaviors, optical properties, theoretical modeling and correlations, and the effect of all these factors on potential applications, such as solar energy, electronics cooling, heat exchangers, machining, and refrigeration. Future challenges and future work scope have also been included. The information from this book enables readers to discover novel techniques, resolve existing research limitations, and create novel hybrid nanofluids which can be implemented for heat transfer applications.
Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material.
Micro- and Nanoengineered Gum-Based Biomaterials for Drug Delivery and Biomedical Applications focuses on micro- and nanotechnology in gums and biopolymers as drug and biomolecule carriers and their applications in biomedicine. Currently, natural gums and polymers are widely utilized as biocarrier systems, to deliver drugs and biomolecules to the target site, for prolonged release and the desired therapeutic effect. Natural gums and polymers are important because they are easily available from natural sources and are characteristically biodegradable, biocompatible, and nontoxic. Natural gums and polymers are also chemically modified with other polymers, in the presence of cross-linking agents, to develop scaffolds, matrices, composites, and interpenetrating polymer networks using micro- and nanotechnology. The book also discusses biological applications, such as gene delivery, cancer therapy, tissue engineering, bioimaging, and theranostics. This book is an important reference source for biomaterials scientists, biomedical engineers, and pharmaceutical scientists, who are looking to increase their understanding of how micro- and nanoengineered biomaterials are being used to create more efficient gum-based drug delivery systems.
Aggregation-Induced Emission (AIE): A Practical Guide introduces readers to the topic, guiding them through fundamental concepts and the latest advances in applications. The book covers concepts, principles and working mechanisms of AIE in AIE-active luminogens, with different classes of AIE luminogens reviewed, including polymers, three-dimensional frameworks (MOFs and COFs) and supramolecular gels. Special focus is given to the structure-property relationship, structural design strategies, targeted properties and application performance. The book provides readers with a deep understanding, not only on the fundamental principles of AIE, but more importantly, on how AIE luminogens and AIE properties can be incorporated in material development.
Bionanocomposites for Food Packaging Applications provides fundamental information on recent developments in this important field of research. The book comprehensively summarizes recent technical research accomplishments in bionanocomposites for food packaging applications. It discusses various aspects of green and sustainable bionanocomposites from the point-of-view of chemistry and engineering. Key chapters include methods of fabrication, processing and advanced production techniques, characterization, PLA, PCL, PGA, Poly (butylene succinate), Chitosan, Starch, Cellulose, PHAs, PHB, Carrageenan, Lignin and Protein-based bionanocomposites for food packaging applications. In addition, the book highlights lifecycle analysis and impacts on health and the environment. Modern technologies for processing and strategies for improving performance, such as biodegradability and permeability, both of which are key factors to achieve environmentally friendly alternatives to more traditional plastic materials are also included.
Natural fiber composites have experienced a renaissance over the last two decades as a response to societal demands for developing eco-friendly, biodegradable and recyclable materials. They are now being extensively used in everyday products as well as in automotive, packaging, sports and the construction industries. These fibers require surface treatments in order to improve their properties and interfacial bonding with polymer matrices, and to reduce their hydrophilic character. These methods can be grouped into three major categories: chemical, physical and biological. Chemical methods use chemical reagents to reduce fibers' hydrophilic tendency and thus improve compatibility with the matrix. They also expose more reactive groups on the fibre surface to facilitate efficient coupling with the matrix. Physical methods change structural and surface properties of the fiber and thereby influence the interfacial bonding with matrices, without extensively changing the chemical composition of the fibers. They are cleaner and simpler than the chemical methods. Biological methods use biological agents like fungi, enzymes and bacteria to modify the fiber surface properties. These methods are not toxic like chemical methods and are not energy-intensive like physical methods. Surface Treatment Methods of Natural Fibers and their Effects on Biocomposites presents an overview and recent developments of these methods. All the major methods are reviewed, explaining the science and methodology behind each method. The effects of these methods on various properties of fibers and the biocomposites made from these fibers are analyzed in detail. The book will be an essential reference for academic researchers, materials scientists and engineers, postgraduate students and industrial researchers and development scientists and engineers working on natural fibers and biocomposites.
This monograph is a detailed introduction to the nascent and ever-evolving fields of metamaterials and nanophotonics, with key techniques and applications needed for a comprehensive understanding of these fields all detailed. These include the 'standard' and high-accuracy 'nonstandard' FDTD techniques, finite-difference frequency-domain mode solvers, the transfer matrix method, analytic calculations for dielectric and plasmonic waveguides, dispersion, Maxwell-Bloch and density functional theory, as well as design methods for constructing metamaterials and nanolasers, and quantum plasmonics. The book is intended for final-year undergraduates, as well as postgraduates or active researchers who wish to understand and enter these fields in a 'user-friendly' manner, and who have a basic understanding of and familiarity with electromagnetic theory.
Oil Palm Biomass for Composite Panels: Fundamentals, Processing, and Applications explains the preparation and utilization of oil palm biomass for advanced composite panel products. It introduces the fundamentals of oil palm biomass and wood-based panel products, including basic properties, durability, deterioration, and adhesives. It also includes in-depth information on processing and treatments organized by biomass type, covering oil palm trunk and lumber, veneer, empty fruit bunches (EFBs), oil palm fronds, and other sources. Additionally, this book focuses on specific composite panel applications, explaining the utilization of oil palm biomass in specific products. Finally, current policy, economic and environmental factors, and supply considerations are discussed. The information contained in Oil Palm Biomass for Composite Panels will be of interest to researchers, scientists and advanced students in bio-based materials, polymer science, composites, wood science, forestry, and biomass, as well as industrial scientists and product designers working with oil palm biomass, wood-based products, and sustainable materials.
Self-Healing Materials: Principles and Technology, Second Edition provides engineers and researchers in both industry and academia the information they need to deploy self-healing technology in a range of potential applications, from adhesives to the automotive industry, and from electronics to biomedical implants. Sections discuss the principal mechanisms of self-healing and how these are applied to the development of materials that have the ability to repair themselves, either with minimal or no human intervention. In addition, the book provides a theoretical background and a review of the major research undertaken to date, providing a thorough grounding in this concept and related technology. Other sections compare the parameters of different self-healing technological processes, such as fault detection mechanisms, methods of triggering and turning off the healing processes, the activation energy of self-healing processes, the means and methods of delivery of the healing substances to the defect locations, self-healing timescale (rate of self-healing), and the extent of self-healing (healing efficiency, recovery of properties, etc.). In addition, mathematical modeling of the processes of self-healing (molecular dynamics simulation), the morphology of healed areas, and other important topics are thoroughly discussed.
Handbook of Impact Modifiers provides key information on how to modify structure and morphology, improve mechanical performance, and prevent changes during the use of polymeric products through proper selection of impact modifiers. The book brings analyses of important publications found in open and patent literature, with special attention given to recent findings that have brought many new essential developments. Sections cover an analysis of chemical origin and related properties of impact modifiers, which are analyzed in general terms to highlight the differences in their properties. This handbook contains the essential theoretical knowledge required for proper selection and use of impact modifiers, including their morphological structure and distribution in a polymer matrix, the effect of polymer crystallization in the presence of and without impact modifiers, important influences on impact modification, mechanisms of modification, and effective methods of incorporation of impact modifiers.
Food, Medical, and Environmental Applications of Nanomaterials is designed to cover different types of nanomaterials that have applications related to the environment, food and medicine. It is an important resource for materials scientists and bioengineers looking to learn more about the applications of nanomaterials for sustainable development applications. Nanoscale materials possess excellent properties that have been explored in the areas of biomedicals, food, agriculture, the environment, catalysis, sensing and energy storage. Examples of these new applications include smart and active food packaging, nanobiosensors, bioremediation, wastewater treatment, implant coatings, tissue engineering, delivery systems for food and pharmaceutical applications, and food safety.
Rheology: Concepts, Methods, and Applications, Fourth Edition provides a thorough historical and theoretical grounding in the field and introduces rheology as the method for solving many practical problems in materials science and engineering. This new edition has been updated to include new evidence-based methods and applications, coverage of non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow and molecular orientation. The book is practical and relevant for industry, but also consistent with rheology courses in academia, making it relevant to both academics and accomplished rheologists in industry.
Lithium-Sulfur Batteries: Materials, Challenges, and Applications presents the advantages of lithium-sulfur batteries, such as high theoretical capacity, low cost, and stability, while also addressing some of the existing challenges. Some of the challenges are low electrical conductivity, the possible reaction of sulfur with lithium to form a soluble lithium salt, the formation of the dendrimer, large volume variation of cathode materials during the electrochemical reaction, and shuttle behavior of highly soluble intermediate polysulfides in the electrolyte. This book provides some possible solutions to these issues through novel architecture, using composite materials, doping to improve low conductivity, etc., as well as emphasizing novel materials, architectural concepts, and methods to improve the performance of lithium-sulfur batteries.
Handbook of Rheological Additives covers how these additives are commonly applied in a wide range of industries, providing readers with information on over 300 organic and inorganic additives. This information is presented in individual tables for each product, whether commercial or generic. Data is divided into General Information, Physical Properties, Health and Safety, Ecological Properties, Use and Performance. Sections cover their state, odor, color, bulk density, density, specific gravity, relative density, boiling point, melting point, pour point, decomposition temperature, glass transition temperature, refractive index, vapor pressure, vapor density, volume resistivity, relative permittivity, ash content, pH, viscosity, rheological behavior, and more. Other notations include updates on NFPA classification, HMIS classification, OSHA hazard class, UN Risk phrases, UN Safety phrases, UN/NA class, DOT class, ADR/RIC class, ICAO/IATA class, IMDG class, packaging group, shipping name, food approvals, autoignition temperature, self-accelerating decomposition temperature, flash point, TLV ACGIH, NIOSH and OSHA, maximum exposure concentration IDLH, animal testing oral-rat, rabbit-dermal, mouse-oral, guinea pig-dermal, rat-dermal, rat-inhalation, mouse-inhalation, ingestion and skin and eye irritation.
Handbook of Polymers, Third Edition represents an update on available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. Polymers selected for this edition include all primary polymeric materials used by the plastics and chemical industries and specialty polymers used in the electronics, pharmaceutical, medical and aerospace fields, with extensive information also provided on biopolymers. The book includes data on all polymeric materials used by the plastics industry and branches of the chemical industry, as well as specialty polymers in the electronics, pharmaceutical, medical and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity, environmental impact, and more.
Advances in Inorganic Chemistry, Volume 79, the latest release in an esteemed series that highlights new advances in the field of inorganic chemistry, presents new and interesting topics authored by an international field of experts.
Handbook of Foaming and Blowing Agents, Second Edition includes the most current information on foaming technology, guiding users on the proper selection of formulation, which is highly dependent on the mechanisms of action of blowing agents and foaming agents, as well as dispersion and solubility. The book includes properties of 23 groups of blowing agents and the typical range of technical performance for each group, including general properties, physical-chemical properties, health and safety, environmental impact, and applications in different products and polymers. All information is illustrated by chemical reactions and diagrams. Chapters in the book look at foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gases and evaporating liquids.
Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.
Analysis of Flame Retardancy in Polymer Science is a scientific/practical book that is conceptualized, designed, and written for students, early-career researchers, and junior engineers to explain the basic principles of fire analysis/characterization methods/methodologies, from flammability, ignition, and fire spread to forced convection and related analyses and to elucidate the mechanisms underlying flame retardancy in both gas and condensed phases followed by correlation between laboratory- and real-scale fire analyses as well as fire analysis from an industrial standpoint. This book is also an indispensable resource for identifying and mounting the latest achievements in fire analysis/characterization methods to frame the effects of fire evaluation strategies to be utilized for research and development. The book also gives a broad description of fire analysis related to different standards and regulations for different applications in different geographic zones.
Atlas of Material Damage, Third Edition provides a systematic analysis of modes of damage and morphology of damaged material and compares the experiences of different industries to provide insights into the most frequently encountered failures, reasons for these failures, and potential improvements to prevent future failure. The book covers defect formation, material damage, and how structure of materials impacts designed function. The effects of composition, processing conditions, and singular and combined actions of different degradants on industrial products are discussed at length. Technological steps required to obtain specifically designed morphology for specific performance are outlined, and numerous examples of how this special morphology can be achieved and deployed in electronics, plastics, pharmaceuticals, aerospace, automotive, medical, dental and a range of other fields and applications is also covered.
The Structural Integrity of Recycled Aggregate Concrete Produced with Fillers and Pozzolans presents a review on the use of by-products, fillers and pozzolanic materials in the development of concrete, with an emphasis on structural integrity. The volume is broken down into key sections, including a review of the types of materials that are used as latent hydraulic supplements, fillers and pozzolans for making recycled aggregate concrete, rheology and hydration phenomenon, the mechanical and microscale nature of concrete, and the impact of fillers and pozzolans on the workability of concrete with case studies. Durability and strength development are also discussed. The final section looks at issues such as performance effect, LCA, environmental impact, sustainability and cost benefit analysis. With detailed case studies throughout, this volume will provide useful information for all stakeholders involved in the built environment, including materials scientists, civil engineers, builders, architects and policymakers.
Viruses, Bacteria and Fungi in the Built Environment: Designing Healthy Indoor Environments opens with a brief introduction to viruses, bacteria and fungi in the built environment and discusses their impact on human health. Sections discuss the microbiology of building materials, the airborne transmission of viruses and bacteria in the built environment, and plumbing-associated microbiome. As the first book on this important area to be written in light of the COVID-19 pandemic, this work will be a valuable reference resource for researchers, civil engineers, architects, postgraduate students, contractors and other professionals working and interested in the field of the built environment. Elements of building design, including choice of materials, ventilation and plumbing can have important implications for the microbiology of a building, and consequently, the health of the building's occupants. This important new reference work explains the microbiology of buildings and disease control in the built environment to those who design and implement new construction and renovate. |
![]() ![]() You may like...
Inverse Problems and Large-Scale…
Larisa Beilina, Yury V. Shestopalov
Hardcover
R3,531
Discovery Miles 35 310
Arithmetic and Algebraic Circuits
Antonio Lloris Ruiz, Encarnacion Castillo Morales, …
Hardcover
R5,234
Discovery Miles 52 340
Advances in Robot Kinematics 2018
Jadran Lenarcic, Vincenzo Parenti-Castelli
Hardcover
Biological Nitrogen Fixation for the…
Claudine Elmerich, Adam Kondorosi, …
Hardcover
R8,709
Discovery Miles 87 090
|