![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This is a beginner's guide with clear step-by-step instructions, explanations, and advice. Each concept is illustrated with a complete example that you can use as a starting point for your own work. If you are an engineer, scientist, mathematician, or student, this book is for you. To get the most from Sage by using the Python programming language, we'll give you the basics of the language to get you started. For this, it will be helpful if you have some experience with basic programming concepts.
A user guide that helps you gain a better understanding of the new NVivo 9. Step-by-step instructions are combined with helpful comments to explain the terms used within qualitative analysis. NVivo 9 is a further development of Nvivo 7 and 8 and consistent with the Windows standard. NVivo 9 can handle all languages and alphabets supported by Windows. User interfaces in English, German, French, Portuguese, Spanish, Japanese and Mandarine. NVivo can import, code, and link Word files, PDFs, audio-, video- and picture files. Several categories of nodes can be created: Hierachical nodes, Relationships, and Matrices. The query methods are clearly explained and how to use the saved results. You can also create Graphical Models, Charts, Tree Maps, Word Trees and other visualizations like Cluster analysis. This book can be used as course literature or for self-teaching. A comprehensive yet clear list of contents, glossary, and index ensures the ease of finding the solution to problems that may occur.
A dashboard is a collection of data visualization tools that provide the means to quickly get an overview of how an organization or a section of an organization is performing. Industries such as sales and manufacturing use dashboards extensively, but dashboards are quickly being adapted across all types of profit and non-profit organizations. THE DESIGN OF INFORMATION DASHBOARDS USING SAS is a nuts and bolts guide to building information dashboards using SAS software. The primary audience for this book is SAS programmers charged with developing dashboards for their organization. This audience would include data managers, report writers, and business analysts. A secondary audience includes business mangers and non-programmers who are just hoping to learn a little more about the potential of the technology. The first four chapters provide background on the science of dashboards and related concepts. The remaining chapters cover coding and design of dashboard elements using SAS software. By providing clear, well-structured examples, the volume shows the reader how to quickly and easily construct basic dashboards that are suitable to their unique needs and environment. SAS users familiar with the basics of SAS and the fundamentals of SAS/GRAPH software will be able to make small changes to the sample code contained in the book to design simple dashboards. Advanced users with more extensive knowledge of SAS/GRAPH and the annotate facility will be able to more fully customize the sample code to fit a variety of needs. CHAPTER DESCRIPTIONS Chapter I. AN INTRODUCTION TO DASHBOARDS The first chapter defines precisely what dashboards are and their common characteristics. Following a brief history of information dashboards, the chapter discusses their value, as well as some negatives, and describes current use and trends. Finally, the value that SAS contributes to producing the medium is introduced. Chapter II. SEVEN STEPS TO CREATING A DASHBOARD The development of a dashboard often requires a substantial investment of time and money, so designers should do it thoughtfully. The goal of this chapter is to guide the reader through the dashboard development process. The chapter provides an overview of the major steps involved, including preparation, design, construction, and maintenance of dashboards. Chapter III. ESSENTIAL ELEMENTS OF A DASHBOARD When you create your dashboard, several essential elements should be present on the interface to make the dashboard maximally effective. The third chapter covers these essential components of a dashboard. Chapter IV. BEST PRACTICES IN DASHBOARD VISUAL DESIGN This chapter covers the foundations of good dashboard design and addresses the contributions of Edward Tufte and Stephen Few to the area. The chapter delves into the science of visual perception and how to apply them to good dashboard design. Chapter V. CREATING DASHBOARD KEY PERFORMANCE INDICATORS USING SAS The fifth chapter presents a library of effective dashboard display media and discusses how to produce them using SAS coding. Programmers will be able to pick and choose those chart types that are most appropriate for their particular dashboard. Strengths and weaknesses of the various chart types are discussed. This chapter will also introduces new SAS procedures such as PROC GKPI. Chapter VI. ASSEMBLING AND DISTRIBUTING SAS DASHBOARDS This chapter describes how to bring all the visual components together to produce a single dashboard display. PROC GREPLAY, ODSLAYOUT, and ODS TAGSETS are described as the methods of choice. Methods of distributing this output are described. Chapter VII. DESIGING DASHBOARDS USING SAS BI DASHBOARDS The final chapter briefly describes the design of dashboards using SAS BI Dashboards business intelligence software. For a limited time use the following code for 10% off your purchase on this site: F46FRNCS This title is also available for purchase on Amazon.com.
New and updated for SAS Enterprise Guide 4.2 In this pragmatic, example-driven book, author Neil Constable demonstrates how you can use SAS code to enhance the capabilities of SAS Enterprise Guide. Designed to help you gain extra value from the products you already have, SAS Programming for Enterprise Guide Users contains tips and techniques that show you a variety of features that cannot be accessed directly through the task interfaces. In all cases, techniques are shown with examples that you can try and test, plus additional exercises are included to give you more practice. The end result is more efficient and resilient use of SAS Enterprise Guide in a wider variety of business areas. Included is a discussion of the following subject areas: the Output Delivery System advanced formatting macro variables and macros advanced reporting using PROC REPORT highlighting in reports hyperlinking between reports and graphs data manipulation using SQL data manipulation using the DATA step extended graphics By adding small amounts of code in key areas, SAS Enterprise Guide users can get more out of the product than the tasks reveal. Users should be familiar with the SAS Enterprise Guide user interface and tasks. No programming experience is necessary.
SAS/IML software is a powerful tool for data analysts because it enables implementation of statistical algorithms that are not available in any SAS procedure. Rick Wicklin's Statistical Programming with SAS/IML Software is the first book to provide a comprehensive description of the software and how to use it. He presents tips and techniques that enable you to use the IML procedure and the SAS/IML Studio application efficiently. In addition to providing a comprehensive introduction to the software, the book also shows how to create and modify statistical graphs, call SAS procedures and R functions from a SAS/IML program, and implement such modern statistical techniques as simulations and bootstrap methods in the SAS/IML language. Written for data analysts working in all industries, graduate students, and consultants, Statistical Programming with SAS/IML Software includes numerous code snippets and more than 100 graphs.
This volume contains several contributions on the general theme of dependence for several classes of stochastic processes, andits implicationson asymptoticproperties of various statistics and on statistical inference issues in statistics and econometrics. The chapter by Berkes, Horvath and Schauer is a survey on their recent results on bootstrap and permutation statistics when the negligibility condition of classical central limit theory is not satis ed. These results are of interest for describing the asymptotic properties of bootstrap and permutation statistics in case of in nite va- ances, and for applications to statistical inference, e.g., the change-point problem. The paper by Stoev reviews some recent results by the author on ergodicity of max-stable processes. Max-stable processes play a central role in the modeling of extreme value phenomena and appear as limits of component-wise maxima. At the presenttime, arathercompleteandinterestingpictureofthedependencestructureof max-stable processes has emerged, involvingspectral functions, extremalstochastic integrals, mixed moving maxima, and other analytic and probabilistic tools. For statistical applications, the problem of ergodicity or non-ergodicity is of primary importance.
Fully updated for SAS 9.2, Ron Cody's "SAS Functions by Example, Second Edition," is a must-have reference for anyone who programs in Base SAS. With the addition of functions new to SAS 9.2, this comprehensive reference manual now includes more than 200 functions, including new character, date and time, distance, probability, sort, and special functions. This new edition also contains more examples for existing functions and more details concerning optional arguments. Like the first edition, the new edition also includes a list of SAS programs, an alphabetic list of all the functions in the book, and a comprehensive index of functions and tasks. Beginning and experienced SAS users will benefit from this useful reference guide to SAS functions.
Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data.
Bridging the gap between statistics texts and SAS documentation, Elementary Statistics Using SAS is written for those who want to perform analyses to solve problems. The first section of the book explains the basics of SAS data sets and shows how to use SAS for descriptive statistics and graphs. The second section discusses fundamental statistical concepts, including normality and hypothesis testing. The remaining sections of the book show analyses for comparing two groups, comparing multiple groups, fitting regression equations, and exploring contingency tables. For each analysis, author Sandra Schlotzhauer explains assumptions, statistical approach, and SAS methods and syntax, and makes conclusions from the results. Statistical methods covered include two-sample t-tests, paired-difference t-tests, analysis of variance, multiple comparison techniques, regression, regression diagnostics, and chi-square tests. Elementary Statistics Using SAS is a thoroughly revised and updated edition of Ramon Littell and Sandra Schlotzhauer's SAS System for Elementary Statistical Analysis.
This is a tutorial explaining how to use the free and open source mathematical software package Sage (version 6.1.1). Sage and this can be downloaded free from the website: http: //www.sagemath.org/. Copyright: (c) 2014 Creative Commons Attribution-ShareAlike 3.0. Royalties go directly to the Sage Foundation.
In PROC SQL by Example: Using SQL within SAS, author Howard Schreier illustrates the use of PROC SQL in the context of the SAS DATA step and other SAS procedures (such as SORT, FREQ, MEANS, SUMMARY, APPEND, DATASETS, and TRANSPOSE) whose functionality overlaps and complements that of SQL. Using a side-by-side approach, this concise reference guide includes many extensively explained examples showing equivalent DATA step and SQL code, enabling SAS users to take advantage of existing SAS skills and knowledge while learning about SQL. Discussions cover the differences between SQL and the DATA step as well as situations where SQL and the DATA step are used together to benefit from the strengths of each. Topics addressed include working with joins and merges; using subqueries; understanding set operators; using the Macro Facility with PROC SQL; maintaining tables; working with views; using PROC SQL as a report generator; and more. This text is ideal for SAS programmers seeking to add PROC SQL to their SAS toolkits as well as SQL programmers striving to better integrate the SAS DATA step and SQL.
Offering extensive coverage of cutting-edge biostatistical methodology used in drug development, this essential reference explores the practical problems facing today's drug developers. It is written by well-known experts in the pharmaceutical industry and provides relevant tutorial material and SAS examples.
This book provides the optimal introduction to MATLAB and Simulink, the primary tools in engineering, science, and industry for simulating dynamic systems. Using the latest versions of the software, the book also has 20 hands-on projects that provide a practical mastery of the subject areas including the code and executable files. Apart from a basic knowledge of mathematics and physics, no further specialist knowledge is necessary. There are also over 80, in-text, exercises where readers themselves can check their mastery of the material. A CD-ROM with source code accompanies the book.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Need to Learn MATLAB? Problem SOLVED! Get started using MATLAB right away with help from this hands-on guide. MATLAB Demystified offers an effective and enlightening method for learning how to get the most out this powerful computational mathematics tool. Using an easy-to-follow format, this book explains the basics of MATLAB up front. You'll find out how to plot functions, solve algebraic equations, and compute integrals. You'll also learn how to solve differential equations, generate numerical solutions of ODEs, and work with special functions. Packed with hundreds of sample equations and explained solutions, and featuring end-of-chapter quizzes and a final exam, this book will teach you MATLAB essentials in no time at all. This self-teaching guide offers: The quickest way to get up and running on MATLAB Hundreds of worked examples with solutions Coverage of MATLAB 7 A quiz at the end of each chapter to reinforce learning and pinpoint weaknesses A final exam at the end of the book A time-saving approach to performing better on homework or on the job Simple enough for a beginner, but challenging enough for an advanced user, MATLAB Demystified is your shortcut to computational precision.
A comprehensive introduction and reference guide to the minimum description length (MDL) Principle that is accessible to researchers dealing with inductive reference in diverse areas including statistics, pattern classification, machine learning, data mining, biology, econometrics, and experimental psychology, as well as philosophers interested in the foundations of statistics. The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern. This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology. Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.
Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more!
Art Carpenter demystifies the powerful REPORT procedure and shows you how to incorporate this highly flexible and customizable procedure into your SAS reporting programs. Combining his years of SAS experience with a talent for instruction, Art offers clear and comprehensive coverage that demonstrates how valuable this procedure is for both summarizing and displaying data. Illustrated with more than two hundred examples and sample exercises to reinforce your learning, "Carpenter's Complete Guide to the SAS REPORT Procedure" provides you with information that you can put to immediate use. The text is divided into three distinct sections. Part 1 introduces you to PROC REPORT, showing you how it works and "thinks." This section is designed to be read linearly by users who are unfamiliar with the procedure. Part 2 is a collection of increasingly more complex examples that feature advanced options and capabilities. It also introduces the relationship between PROC REPORT and the Output Delivery System (ODS). Part 3 incorporates the options and statements described in Parts 1 and 2 into a series of examples that highlight many of the extended capabilities of PROC REPORT. Included in this section is a discussion of a few ODS statements and options that might be useful to a PROC REPORT programmer, plus an in-depth look at the PROC REPORT process itself, especially as it relates to the execution of compute blocks. Art's author page at support.sas.com/carpenter includes the following bonus material: example SAS data sets, example results, and a compilation of nearly 100 related conference papers.
Proven bestseller: almost 6000 copies sold in the U.S. in two editions New edition updated to cover S-PLUS 6.0 Can be used as an introduction to R, as well as S-PLUS New exercises have been added; Includes a comparison of S-PLUS and R Well-suited for self-study
Navigate the world of the powerful SQL procedure with Katherine Prairie's Essential PROC SQL Handbook for SAS Users. Written in an easy-to-use, logical format, this comprehensive reference focuses on the functionality of the procedure, as well as the accomplishment of common tasks using PROC SQL, enabling readers to quickly develop and enhance their SQL skills. Features include more than 300 examples of PROC SQL code, plus queries and diagrams showing how the statements are processed, tips and techniques highlighting "need-to-know" concepts, and an appendix designed specifically for SQL Pass-Through Facility and SAS/ACCESS users. This practical guide is written for SAS users of all levels who want to learn how to integrate the SQL procedure into their Base SAS and/or SAS/ACCESS programs as well as SQL programmers who want to adapt their current skills to SAS.
Updated for SAS 9, A Step-by-Step Approach to Using SAS for Univariate and Multivariate Statistics, Second Edition, is an easy-to-understand introduction to SAS as well as to univariate and multivariate statistics. Clear explanations and simple language guide you through the research terminology, data input, data manipulation, and types of statistical analysis that are most commonly used in the social and behavioral sciences. Providing practice data inspired by actual studies, this book teaches you how to choose the right statistic, understand the assumptions underlying the procedure, prepare the SAS program for the analysis, interpret the output, and summarize the analysis and results according to the format prescribed in the Publication Manual of the American Psychological Association. Step by step, authors Norm O'Rourke, Larry Hatcher, and Edward Stepanski demonstrate how to perform the following types of analysis: simple descriptive statistics, measures of bivariate association, t tests for independent samples and paired samples, ANOVA and MANOVA, multiple regression, principal component analysis, and assessing scale reliability with coefficient alpha. This text is ideally suited to students who are beginning their study of data analysis, and to professors and researchers who want a handy reference on their bookshelf.
Do you need to conduct data analysis with SPSS but are unfamiliar with the software? This user-friendly book-a SAGE bestseller-helps you become proficient in SPSS by teaching you the fundamentals of SPSS. An Introductory Guide to SPSS (R) for Windows (R), Second Edition develops SPSS skills using sample programs illustrating how to conduct the analyses typically covered in an introductory statistics course. Throughout the book, data are analyzed and SPSS output are interpreted in the context of research questions. Boldface text is used to indicate operations or choices the reader will need to make when running SPSS. Exercises are also included, with solutions provided in the appendix. "I want to commend the author for including a chapter on using the SPSS manuals. I would not have thought of this addition, and the information helps the reader go on to learn the more complex components of SPSS." -Laura Myers, University of Georgia This Second Edition has been updated to SPSS Version 12.0, although its approach makes it useful for readers running other versions. Each chapter in this updated text includes a statement of its purpose and goal, as well as a chapter glossary. The updated text includes new SPSS features, including how to recode data using the Visual Bander and how to read text data using the Text Import Wizard. Author Eric L. Einspruch thoroughly covers critical basic skills: * How to create data sets by defining and coding data, using a codebook, and entering data * How to run SPSS and work with different SPSS files * How to manipulate data by recoding values, computing values, and selecting subsets of cases to include in an analysis * How to manage data files by reading data that have been entered using other software, appending files, and merging files * How to analyze data using SPSS pull-down menus * How to analyze data using programs written in SPSS syntax This outstanding book concludes with a discussion of how to get help in SPSS, suggestions on how to make the most of SPSS manuals, and directions for taking the next steps toward software mastery.
The key to understanding household saving is obtaining appropriate
data. Dealing with differences between rich and poor households,
for example, or the old and the young, require observation of a
large number of households. The focus of this study is to obtain
data on many households from a number of different countries and to
examine them in a coherent fashion. The hope is that through these
observations we can learn about the ways policies affect savings
and that other differences among savers can be controlled for,
instead of being blamed on "cultural differences
The information contained in this book has served as the basis for a graduate-level biostatistics class at the University of North Carolina at Chapel Hill. The book focuses in the General Linear Model (GLM) theory, stated in matrix terms, which provides a more compact, clear, and unified presentation of regression of ANOVA than do traditional sums of squares and scalar equations. The book contains a balanced treatment of regression and ANOVA yet is very compact. Reflecting current computational practice, most sums of squares formulas and associated theory, especially in ANOVA, are not included. The text contains almost no proofs, despite the presence of a large number of basic theoretical results. Many numerical examples are provided, and include both the SAS code and equivalent mathematical representation needed to produce the outputs that are presented. All exercises involve only “real” data, collected in the course of scientific research. The book is divided into sections covering the following topics:
This book presents the basic procedures for utilizing SAS Enterprise Guide to analyze statistical data. SAS Enterprise Guide is a graphical user interface (point and click) to the main SAS application. Each chapter contains a brief conceptual overview and then guides the reader through concrete step-by-step examples to complete the analyses. The eleven sections of the book cover a wide range of statistical procedures including descriptive statistics, correlation and simple regression, t tests, one-way chi square, data transformations, multiple regression, analysis of variance, analysis of covariance, multivariate analysis of variance, factor analysis, and canonical correlation analysis. Designed to be used either as a stand-alone resource or as an accompaniment to a statistics course, the book offers a smooth path to statistical analysis with SAS Enterprise Guide for advanced undergraduate and beginning graduate students, as well as professionals in psychology, education, business, health, social work, sociology, and many other fields. |
You may like...
Neutrosophic Sets in Decision Analysis…
Mohamed Abdel-Basset, Florentin Smarandache
Hardcover
R6,641
Discovery Miles 66 410
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,501
Discovery Miles 15 010
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, …
Paperback
R3,015
Discovery Miles 30 150
|