|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Understand how machine learning works and get hands-on experience
of using R to build algorithms that can solve various real-world
problems Key Features Gain a comprehensive overview of different
machine learning techniques Explore various methods for selecting a
particular algorithm Implement a machine learning project from
problem definition through to the final model Book DescriptionWith
huge amounts of data being generated every moment, businesses need
applications that apply complex mathematical calculations to data
repeatedly and at speed. With machine learning techniques and R,
you can easily develop these kinds of applications in an efficient
way. Practical Machine Learning with R begins by helping you grasp
the basics of machine learning methods, while also highlighting how
and why they work. You will understand how to get these algorithms
to work in practice, rather than focusing on mathematical
derivations. As you progress from one chapter to another, you will
gain hands-on experience of building a machine learning solution in
R. Next, using R packages such as rpart, random forest, and
multiple imputation by chained equations (MICE), you will learn to
implement algorithms including neural net classifier, decision
trees, and linear and non-linear regression. As you progress
through the book, you'll delve into various machine learning
techniques for both supervised and unsupervised learning
approaches. In addition to this, you'll gain insights into
partitioning the datasets and mechanisms to evaluate the results
from each model and be able to compare them. By the end of this
book, you will have gained expertise in solving your business
problems, starting by forming a good problem statement, selecting
the most appropriate model to solve your problem, and then ensuring
that you do not overtrain it. What you will learn Define a problem
that can be solved by training a machine learning model Obtain,
verify and clean data before transforming it into the correct
format for use Perform exploratory analysis and extract features
from data Build models for neural net, linear and non-linear
regression, classification, and clustering Evaluate the performance
of a model with the right metrics Implement a classification
problem using the neural net package Employ a decision tree using
the random forest library Who this book is forIf you are a data
analyst, data scientist, or a business analyst who wants to
understand the process of machine learning and apply it to a real
dataset using R, this book is just what you need. Data scientists
who use Python and want to implement their machine learning
solutions using R will also find this book very useful. The book
will also enable novice programmers to start their journey in data
science. Basic knowledge of any programming language is all you
need to get started.
A practical guide simplifying discrete math for curious minds and
demonstrating its application in solving problems related to
software development, computer algorithms, and data science Key
Features Apply the math of countable objects to practical problems
in computer science Explore modern Python libraries such as
scikit-learn, NumPy, and SciPy for performing mathematics Learn
complex statistical and mathematical concepts with the help of
hands-on examples and expert guidance Book DescriptionDiscrete
mathematics deals with studying countable, distinct elements, and
its principles are widely used in building algorithms for computer
science and data science. The knowledge of discrete math concepts
will help you understand the algorithms, binary, and general
mathematics that sit at the core of data-driven tasks. Practical
Discrete Mathematics is a comprehensive introduction for those who
are new to the mathematics of countable objects. This book will
help you get up to speed with using discrete math principles to
take your computer science skills to a more advanced level. As you
learn the language of discrete mathematics, you'll also cover
methods crucial to studying and describing computer science and
machine learning objects and algorithms. The chapters that follow
will guide you through how memory and CPUs work. In addition to
this, you'll understand how to analyze data for useful patterns,
before finally exploring how to apply math concepts in network
routing, web searching, and data science. By the end of this book,
you'll have a deeper understanding of discrete math and its
applications in computer science, and be ready to work on
real-world algorithm development and machine learning. What you
will learn Understand the terminology and methods in discrete math
and their usage in algorithms and data problems Use Boolean algebra
in formal logic and elementary control structures Implement
combinatorics to measure computational complexity and manage memory
allocation Use random variables, calculate descriptive statistics,
and find average-case computational complexity Solve graph problems
involved in routing, pathfinding, and graph searches, such as
depth-first search Perform ML tasks such as data visualization,
regression, and dimensionality reduction Who this book is forThis
book is for computer scientists looking to expand their knowledge
of discrete math, the core topic of their field. University
students looking to get hands-on with computer science,
mathematics, statistics, engineering, or related disciplines will
also find this book useful. Basic Python programming skills and
knowledge of elementary real-number algebra are required to get
started with this book.
Solve common and not-so-common financial problems using Python
libraries such as NumPy, SciPy, and pandas Key Features Use
powerful Python libraries such as pandas, NumPy, and SciPy to
analyze your financial data Explore unique recipes for financial
data analysis and processing with Python Estimate popular financial
models such as CAPM and GARCH using a problem-solution approach
Book DescriptionPython is one of the most popular programming
languages used in the financial industry, with a huge set of
accompanying libraries. In this book, you'll cover different ways
of downloading financial data and preparing it for modeling. You'll
calculate popular indicators used in technical analysis, such as
Bollinger Bands, MACD, RSI, and backtest automatic trading
strategies. Next, you'll cover time series analysis and models,
such as exponential smoothing, ARIMA, and GARCH (including
multivariate specifications), before exploring the popular CAPM and
the Fama-French three-factor model. You'll then discover how to
optimize asset allocation and use Monte Carlo simulations for tasks
such as calculating the price of American options and estimating
the Value at Risk (VaR). In later chapters, you'll work through an
entire data science project in the financial domain. You'll also
learn how to solve the credit card fraud and default problems using
advanced classifiers such as random forest, XGBoost, LightGBM, and
stacked models. You'll then be able to tune the hyperparameters of
the models and handle class imbalance. Finally, you'll focus on
learning how to use deep learning (PyTorch) for approaching
financial tasks. By the end of this book, you'll have learned how
to effectively analyze financial data using a recipe-based
approach. What you will learn Download and preprocess financial
data from different sources Backtest the performance of automatic
trading strategies in a real-world setting Estimate financial
econometrics models in Python and interpret their results Use Monte
Carlo simulations for a variety of tasks such as derivatives
valuation and risk assessment Improve the performance of financial
models with the latest Python libraries Apply machine learning and
deep learning techniques to solve different financial problems
Understand the different approaches used to model financial time
series data Who this book is forThis book is for financial
analysts, data analysts, and Python developers who want to learn
how to implement a broad range of tasks in the finance domain. Data
scientists looking to devise intelligent financial strategies to
perform efficient financial analysis will also find this book
useful. Working knowledge of the Python programming language is
mandatory to grasp the concepts covered in the book effectively.
Why learn R? Because it's rapidly becoming the standard for
developing statistical software. R in a Nutshell provides a quick
and practical way to learn this increasingly popular open source
language and environment. You'll not only learn how to program in
R, but also how to find the right user-contributed R packages for
statistical modeling, visualization, and bioinformatics. The author
introduces you to the R environment, including the R graphical user
interface and console, and takes you through the fundamentals of
the object-oriented R language. Then, through a variety of
practical examples from medicine, business, and sports, you'll
learn how you can use this remarkable tool to solve your own data
analysis problems. * Understand the basics of the language,
including the nature of R objects * Learn how to write R functions
and build your own packages * Work with data through visualization,
statistical analysis, and other methods * Explore the wealth of
packages contributed by the R community * Become familiar with the
lattice graphics package for high-level data visualization * Learn
about bioinformatics packages provided by Bioconductor "I am
excited about this book.R in a Nutshell is a great introduction to
R, as well as a comprehensive reference for using R in data
analytics and visualization. Adler provides 'real world' examples,
practical advice, and scripts, making it accessible to anyone
working with data, not just professional statisticians." --Martin
Schultz, Arthur K. Watson Professor of Computer Science, Yale
University
Discover easy-to-follow solutions and techniques to help you to
implement applied mathematical concepts such as probability,
calculus, and equations using Python's numeric and scientific
libraries Key Features Compute complex mathematical problems using
programming logic with the help of step-by-step recipes Learn how
to utilize Python's libraries for computation, mathematical
modeling, and statistics Discover simple yet effective techniques
for solving mathematical equations and apply them in real-world
statistics Book DescriptionPython, one of the world's most popular
programming languages, has a number of powerful packages to help
you tackle complex mathematical problems in a simple and efficient
way. These core capabilities help programmers pave the way for
building exciting applications in various domains, such as machine
learning and data science, using knowledge in the computational
mathematics domain. The book teaches you how to solve problems
faced in a wide variety of mathematical fields, including calculus,
probability, statistics and data science, graph theory,
optimization, and geometry. You'll start by developing core skills
and learning about packages covered in Python's scientific stack,
including NumPy, SciPy, and Matplotlib. As you advance, you'll get
to grips with more advanced topics of calculus, probability, and
networks (graph theory). After you gain a solid understanding of
these topics, you'll discover Python's applications in data science
and statistics, forecasting, geometry, and optimization. The final
chapters will take you through a collection of miscellaneous
problems, including working with specific data formats and
accelerating code. By the end of this book, you'll have an arsenal
of practical coding solutions that can be used and modified to
solve a wide range of practical problems in computational
mathematics and data science. What you will learn Get familiar with
basic packages, tools, and libraries in Python for solving
mathematical problems Explore various techniques that will help you
to solve computational mathematical problems Understand the core
concepts of applied mathematics and how you can apply them in
computer science Discover how to choose the most suitable package,
tool, or technique to solve a certain problem Implement basic
mathematical plotting, change plot styles, and add labels to the
plots using Matplotlib Get to grips with probability theory with
the Bayesian inference and Markov Chain Monte Carlo (MCMC) methods
Who this book is forThis book is for professional programmers and
students looking to solve mathematical problems computationally
using Python. Advanced mathematics knowledge is not a requirement,
but a basic knowledge of mathematics will help you to get the most
out of this book. The book assumes familiarity with Python concepts
of data structures.
Design clever algorithms that discover hidden patterns and draw
responses from unstructured, unlabeled data. Key Features Build
state-of-the-art algorithms that can solve your business' problems
Learn how to find hidden patterns in your data Revise key concepts
with hands-on exercises using real-world datasets Book
DescriptionStarting with the basics, Applied Unsupervised Learning
with R explains clustering methods, distribution analysis, data
encoders, and features of R that enable you to understand your data
better and get answers to your most pressing business questions.
This book begins with the most important and commonly used method
for unsupervised learning - clustering - and explains the three
main clustering algorithms - k-means, divisive, and agglomerative.
Following this, you'll study market basket analysis, kernel density
estimation, principal component analysis, and anomaly detection.
You'll be introduced to these methods using code written in R, with
further instructions on how to work with, edit, and improve R code.
To help you gain a practical understanding, the book also features
useful tips on applying these methods to real business problems,
including market segmentation and fraud detection. By working
through interesting activities, you'll explore data encoders and
latent variable models. By the end of this book, you will have a
better understanding of different anomaly detection methods, such
as outlier detection, Mahalanobis distances, and contextual and
collective anomaly detection. What you will learn Implement
clustering methods such as k-means, agglomerative, and divisive
Write code in R to analyze market segmentation and consumer
behavior Estimate distribution and probabilities of different
outcomes Implement dimension reduction using principal component
analysis Apply anomaly detection methods to identify fraud Design
algorithms with R and learn how to edit or improve code Who this
book is forApplied Unsupervised Learning with R is designed for
business professionals who want to learn about methods to
understand their data better, and developers who have an interest
in unsupervised learning. Although the book is for beginners, it
will be beneficial to have some basic, beginner-level familiarity
with R. This includes an understanding of how to open the R
console, how to read data, and how to create a loop. To easily
understand the concepts of this book, you should also know basic
mathematical concepts, including exponents, square roots, means,
and medians.
|
|