0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (8)
  • R250 - R500 (28)
  • R500+ (1,386)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Introduction to Global Optimization Exploiting Space-Filling Curves (Paperback, 2013 ed.): Yaroslav D. Sergeyev, Roman G.... Introduction to Global Optimization Exploiting Space-Filling Curves (Paperback, 2013 ed.)
Yaroslav D. Sergeyev, Roman G. Strongin, Daniela Lera
R1,833 Discovery Miles 18 330 Ships in 18 - 22 working days

Introduction to Global Optimization Exploiting Space-Filling Curves provides an overview of classical and new results pertaining to the usage of space-filling curves in global optimization. The authors look at a family of derivative-free numerical algorithms applying space-filling curves to reduce the dimensionality of the global optimization problem; along with a number of unconventional ideas, such as adaptive strategies for estimating Lipschitz constant, balancing global and local information to accelerate the search. Convergence conditions of the described algorithms are studied in depth and theoretical considerations are illustrated through numerical examples. This work also contains a code for implementing space-filling curves that can be used for constructing new global optimization algorithms. Basic ideas from this text can be applied to a number of problems including problems with multiextremal and partially defined constraints and non-redundant parallel computations can be organized. Professors, students, researchers, engineers, and other professionals in the fields of pure mathematics, nonlinear sciences studying fractals, operations research, management science, industrial and applied mathematics, computer science, engineering, economics, and the environmental sciences will find this title useful .

MATLAB Symbolic Algebra and Calculus Tools (Paperback, 1st ed.): Cesar Lopez MATLAB Symbolic Algebra and Calculus Tools (Paperback, 1st ed.)
Cesar Lopez
R2,328 Discovery Miles 23 280 Ships in 18 - 22 working days

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Symbolic Algebra and Calculus Tools introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic variables and functions, you will learn how to solve equations in MATLAB, both symbolically and numerically, and how to simplify the results. Extensive coverage of polynomial solutions, inequalities and systems of equations are covered in detail. You will see how MATLAB incorporates vector, matrix and character variables, and functions thereof. MATLAB is a powerful symbolic manipulator which enables you to factorize, expand and simplify complex algebraic expressions over all common fields (including over finite fields and algebraic field extensions of the rational numbers). With MATLAB you can also work with ease in matrix algebra, making use of commands which allow you to find eigenvalues, eigenvectors, determinants, norms and various matrix decompositions, among many other features. Lastly, you will see how you can use MATLAB to explore mathematical analysis, finding limits of sequences and functions, sums of series, integrals, derivatives and solving differential equation.

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (Paperback, 2nd ed. 2013): Uffe B. Kjaerulff,... Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (Paperback, 2nd ed. 2013)
Uffe B. Kjaerulff, Anders L. Madsen
R3,640 Discovery Miles 36 400 Ships in 18 - 22 working days

Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.

Computer Algebra - An Algorithm-Oriented Introduction (Paperback, 1st ed. 2021): Wolfram Koepf Computer Algebra - An Algorithm-Oriented Introduction (Paperback, 1st ed. 2021)
Wolfram Koepf
R1,445 Discovery Miles 14 450 Ships in 10 - 15 working days

This textbook offers an algorithmic introduction to the field of computer algebra. A leading expert in the field, the author guides readers through numerous hands-on tutorials designed to build practical skills and algorithmic thinking. This implementation-oriented approach equips readers with versatile tools that can be used to enhance studies in mathematical theory, applications, or teaching. Presented using Mathematica code, the book is fully supported by downloadable sessions in Mathematica, Maple, and Maxima. Opening with an introduction to computer algebra systems and the basics of programming mathematical algorithms, the book goes on to explore integer arithmetic. A chapter on modular arithmetic completes the number-theoretic foundations, which are then applied to coding theory and cryptography. From here, the focus shifts to polynomial arithmetic and algebraic numbers, with modern algorithms allowing the efficient factorization of polynomials. The final chapters offer extensions into more advanced topics: simplification and normal forms, power series, summation formulas, and integration. Computer Algebra is an indispensable resource for mathematics and computer science students new to the field. Numerous examples illustrate algorithms and their implementation throughout, with online support materials to encourage hands-on exploration. Prerequisites are minimal, with only a knowledge of calculus and linear algebra assumed. In addition to classroom use, the elementary approach and detailed index make this book an ideal reference for algorithms in computer algebra.

MATLAB Control Systems Engineering (Paperback, 1st ed.): Cesar Lopez MATLAB Control Systems Engineering (Paperback, 1st ed.)
Cesar Lopez
R1,954 Discovery Miles 19 540 Ships in 18 - 22 working days

MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java.MATLAB Control Systems Engineering introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to the MATLAB environment and MATLAB programming, this book provides all the material needed to design and analyze control systems using MATLAB's specialized Control Systems Toolbox. The Control Systems Toolbox offers an extensive range of tools for classical and modern control design. Using these tools you can create models of linear time-invariant systems in transfer function, zero-pole-gain or state space format. You can manipulate both discrete-time and continuous-time systems and convert between various representations. You can calculate and graph time response, frequency response and loci of roots. Other functions allow you to perform pole placement, optimal control and estimates. The Control System Toolbox is open and extendible, allowing you to create customized M-files to suit your specific applications.

R for Cloud Computing - An Approach for Data Scientists (Paperback, 2014 ed.): A. Ohri R for Cloud Computing - An Approach for Data Scientists (Paperback, 2014 ed.)
A. Ohri
R2,216 Discovery Miles 22 160 Ships in 18 - 22 working days

R for Cloud Computing looks at some of the tasks performed by business analysts on the desktop (PC era) and helps the user navigate the wealth of information in R and its 4000 packages as well as transition the same analytics using the cloud. With this information the reader can select both cloud vendors and the sometimes confusing cloud ecosystem as well as the R packages that can help process the analytical tasks with minimum effort, cost and maximum usefulness and customization. The use of Graphical User Interfaces (GUI) and Step by Step screenshot tutorials is emphasized in this book to lessen the famous learning curve in learning R and some of the needless confusion created in cloud computing that hinders its widespread adoption. This will help you kick-start analytics on the cloud including chapters on both cloud computing, R, common tasks performed in analytics including the current focus and scrutiny of Big Data Analytics, setting up and navigating cloud providers. Readers are exposed to a breadth of cloud computing choices and analytics topics without being buried in needless depth. The included references and links allow the reader to pursue business analytics on the cloud easily. It is aimed at practical analytics and is easy to transition from existing analytical set up to the cloud on an open source system based primarily on R. This book is aimed at industry practitioners with basic programming skills and students who want to enter analytics as a profession. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. It will also help researchers and academics but at a practical rather than conceptual level. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The cloud computing paradigm is firmly established as the next generation of computing from microprocessors to desktop PCs to cloud.

Numerical  Infinities and Infinitesimals in Optimization (Hardcover, 1st ed. 2022): Yaroslav D. Sergeyev, Renato De Leone Numerical Infinities and Infinitesimals in Optimization (Hardcover, 1st ed. 2022)
Yaroslav D. Sergeyev, Renato De Leone
R4,327 Discovery Miles 43 270 Ships in 10 - 15 working days

This book provides a friendly introduction to the paradigm and proposes a broad panorama of killing applications of the Infinity Computer in optimization: radically new numerical algorithms, great theoretical insights, efficient software implementations, and interesting practical case studies. This is the first book presenting to the readers interested in optimization the advantages of a recently introduced supercomputing paradigm that allows to numerically work with different infinities and infinitesimals on the Infinity Computer patented in several countries. One of the editors of the book is the creator of the Infinity Computer, and another editor was the first who has started to use it in optimization. Their results were awarded by numerous scientific prizes. This engaging book opens new horizons for researchers, engineers, professors, and students with interests in supercomputing paradigms, optimization, decision making, game theory, and foundations of mathematics and computer science. "Mathematicians have never been comfortable handling infinities... But an entirely new type of mathematics looks set to by-pass the problem... Today, Yaroslav Sergeyev, a mathematician at the University of Calabria in Italy solves this problem... " MIT Technology Review "These ideas and future hardware prototypes may be productive in all fields of science where infinite and infinitesimal numbers (derivatives, integrals, series, fractals) are used." A. Adamatzky, Editor-in-Chief of the International Journal of Unconventional Computing. "I am sure that the new approach ... will have a very deep impact both on Mathematics and Computer Science." D. Trigiante, Computational Management Science. "Within the grossone framework, it becomes feasible to deal computationally with infinite quantities, in a way that is both new (in the sense that previously intractable problems become amenable to computation) and natural". R. Gangle, G. Caterina, F. Tohme, Soft Computing. "The computational features offered by the Infinity Computer allow us to dynamically change the accuracy of representation and floating-point operations during the flow of a computation. When suitably implemented, this possibility turns out to be particularly advantageous when solving ill-conditioned problems. In fact, compared with a standard multi-precision arithmetic, here the accuracy is improved only when needed, thus not affecting that much the overall computational effort." P. Amodio, L. Brugnano, F. Iavernaro & F. Mazzia, Soft Computing

MATLAB for Psychologists (Paperback, 2012 ed.): Mauro Borgo, Alessandro Soranzo, Massimo Grassi MATLAB for Psychologists (Paperback, 2012 ed.)
Mauro Borgo, Alessandro Soranzo, Massimo Grassi
R1,749 Discovery Miles 17 490 Ships in 18 - 22 working days

The matrix laboratory interactive computing environment MATLAB has brought creativity to research in diverse disciplines, particularly in designing and programming experiments. More commonly used in mathematics and the sciences, it also lends itself to a variety of applications across the field of psychology. For the novice looking to use it in experimental psychology research, though, becoming familiar with MATLAB can be a daunting task.

"MATLAB for Psychologists"expertly guides readers through the component steps, skills, and operations of the software, with plentiful graphics and examples to match the reader s comfort level. Using an extended illustration, this concise volume explains the program s usefulness at any point in an experiment, without the limits imposed by other types of software. And the authors demonstrate the responsiveness of MATLAB to the individual s research needs, whether the task is programming experiments, creating sensory stimuli, running simulations, or calculating statistics for data analysis.

Key features of the coverage:

Thinking in a matrix way.Handling and plotting data.Guidelines for improved programming, sound, and imaging.Statistical analysis and signal detection theory indexes.The Graphical User Interface.The Psychophysics Toolbox.

"MATLAB for Psychologists"serves a wide audience of advanced undergraduate and graduate level psychology students, professors, and researchers as well as lab technicians involved in programming psychology experiments."

Asymptotic Statistical Inference - A Basic Course Using R (Paperback, 1st ed. 2021): Shailaja Deshmukh, Madhuri Kulkarni Asymptotic Statistical Inference - A Basic Course Using R (Paperback, 1st ed. 2021)
Shailaja Deshmukh, Madhuri Kulkarni
R1,974 Discovery Miles 19 740 Ships in 10 - 15 working days

The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald's test, their relationship with the likelihood ratio test and Karl Pearson's chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson's chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.

An Engineer's Guide to Mathematica (R) (Paperback): E.B. Magrab An Engineer's Guide to Mathematica (R) (Paperback)
E.B. Magrab
R2,885 Discovery Miles 28 850 Ships in 18 - 22 working days

Free Mathematica 10 Update Included! Now available from www.wiley.com/go/magrab Updated material includes: - Creating regions and volumes of arbitrary shape and determining their properties: arc length, area, centroid, and area moment of inertia - Performing integrations, solving equations, and determining the maximum and minimum values over regions of arbitrary shape - Solving numerically a class of linear second order partial differential equations in regions of arbitrary shape using finite elements An Engineer's Guide to Mathematica enables the reader to attain the skills to create Mathematica 9 programs that solve a wide range of engineering problems and that display the results with annotated graphics. This book can be used to learn Mathematica, as a companion to engineering texts, and also as a reference for obtaining numerical and symbolic solutions to a wide range of engineering topics. The material is presented in an engineering context and the creation of interactive graphics is emphasized. The first part of the book introduces Mathematica's syntax and commands useful in solving engineering problems. Tables are used extensively to illustrate families of commands and the effects that different options have on their output. From these tables, one can easily determine which options will satisfy one's current needs. The order of the material is introduced so that the engineering applicability of the examples increases as one progresses through the chapters. The second part of the book obtains solutions to representative classes of problems in a wide range of engineering specialties. Here, the majority of the solutions are presented as interactive graphics so that the results can be explored parametrically. Key features: * Material is based on Mathematica 9 * Presents over 85 examples on a wide range of engineering topics, including vibrations, controls, fluids, heat transfer, structures, statistics, engineering mathematics, and optimization * Each chapter contains a summary table of the Mathematica commands used for ease of reference * Includes a table of applications summarizing all of the engineering examples presented. * Accompanied by a website containing Mathematica notebooks of all the numbered examples An Engineer's Guide to Mathematica is a must-have reference for practitioners, and graduate and undergraduate students who want to learn how to solve engineering problems with Mathematica.

Recent Advances in Industrial and Applied Mathematics (Hardcover, 1st ed. 2022): Tomas Chacon Rebollo, Rosa Donat, Inmaculada... Recent Advances in Industrial and Applied Mathematics (Hardcover, 1st ed. 2022)
Tomas Chacon Rebollo, Rosa Donat, Inmaculada Higueras
R1,303 Discovery Miles 13 030 Ships in 10 - 15 working days

This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress.

Mixed-Effects Models in S and S-PLUS (Paperback, Softcover reprint of the original 1st ed. 2000): Jose Pinheiro, Douglas Bates Mixed-Effects Models in S and S-PLUS (Paperback, Softcover reprint of the original 1st ed. 2000)
Jose Pinheiro, Douglas Bates
R5,891 Discovery Miles 58 910 Ships in 18 - 22 working days

An overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. The authors present a unified model-building strategy for both models and apply this to the analysis of over 20 real datasets from a wide variety of areas, including pharmacokinetics, agriculture, and manufacturing. Much emphasis is placed on the use of graphical displays at the various phases of the model-building process, starting with exploratory plots of the data and concluding with diagnostic plots to assess the adequacy of a fitted model. The NLME library for analyzing mixed-effects models in S and S-PLUS, developed by the authors, provides the underlying software for implementing the methods presented. This balanced mix of real data examples, modeling software, and theory makes the book a useful reference for practitioners who use, or intend to use, mixed-effects models in their data analyses. It can also be used as a text for a one-semester graduate-level applied course.

Hurricane Climatology - A Modern Statistical Guide Using R (Hardcover): James B. Elsner, Thomas H. Jagger Hurricane Climatology - A Modern Statistical Guide Using R (Hardcover)
James B. Elsner, Thomas H. Jagger
R3,453 Discovery Miles 34 530 Ships in 10 - 15 working days

Hurricanes are nature's most destructive storms and they are becoming more powerful as the globe warms. Hurricane Climatology explains how to analyze and model hurricane data to better understand and predict present and future hurricane activity. It uses the open-source and now widely used R software for statistical computing to create a tutorial-style manual for independent study, review, and reference. The text is written around the code that when copied will reproduce the graphs, tables, and maps. The approach is different from other books that use R. It focuses on a single topic and explains how to make use of R to better understand the topic. The book is organized into two parts, the first of which provides material on software, statistics, and data. The second part presents methods and models used in hurricane climate research.

Excel 2010 for Biological and Life Sciences Statistics - A Guide to Solving Practical Problems (Paperback, 2013 ed.): Thomas J.... Excel 2010 for Biological and Life Sciences Statistics - A Guide to Solving Practical Problems (Paperback, 2013 ed.)
Thomas J. Quirk, Meghan Quirk, Howard Horton
R2,121 Discovery Miles 21 210 Ships in 18 - 22 working days

This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems. If understanding statistics isn t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.

Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, "Excel 2010 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems" is the first book to capitalize on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work.

Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned. "

Six Sigma with  R - Statistical Engineering for Process Improvement (Paperback, 2012 ed.): Emilio L. Cano, Javier Martinez... Six Sigma with R - Statistical Engineering for Process Improvement (Paperback, 2012 ed.)
Emilio L. Cano, Javier Martinez Moguerza, Andres Redchuk
R2,410 Discovery Miles 24 100 Ships in 18 - 22 working days

Six Sigma has arisen in the last two decades as a breakthrough Quality Management Methodology. With Six Sigma, we are solving problems and improving processes using as a basis one of the most powerful tools of human development: the scientific method. For the analysis of data, Six Sigma requires the use of statistical software, being R an Open Source option that fulfills this requirement. R is a software system that includes a programming language widely used in academic and research departments. Nowadays, it is becoming a real alternative within corporate environments. The aim of this book is to show how R can be used as the software tool in the development of Six Sigma projects. The book includes a gentle introduction to Six Sigma and a variety of examples showing how to use R within real situations. It has been conceived as a self contained piece. Therefore, it is addressed not only to Six Sigma practitioners, but also to professionals trying to initiate themselves in this management methodology. The book may be used as a text book as well.

Interactive Web-Based Data Visualization with R, plotly, and shiny (Paperback): Carson Sievert Interactive Web-Based Data Visualization with R, plotly, and shiny (Paperback)
Carson Sievert
R2,302 Discovery Miles 23 020 Ships in 10 - 15 working days

The richly illustrated Interactive Web-Based Data Visualization with R, plotly, and shiny focuses on the process of programming interactive web graphics for multidimensional data analysis. It is written for the data analyst who wants to leverage the capabilities of interactive web graphics without having to learn web programming. Through many R code examples, you will learn how to tap the extensive functionality of these tools to enhance the presentation and exploration of data. By mastering these concepts and tools, you will impress your colleagues with your ability to quickly generate more informative, engaging, and reproducible interactive graphics using free and open source software that you can share over email, export to pdf, and more. Key Features: Convert static ggplot2 graphics to an interactive web-based form Link, animate, and arrange multiple plots in standalone HTML from R Embed, modify, and respond to plotly graphics in a shiny app Learn best practices for visualizing continuous, discrete, and multivariate data Learn numerous ways to visualize geo-spatial data This book makes heavy use of plotly for graphical rendering, but you will also learn about other R packages that support different phases of a data science workflow, such as tidyr, dplyr, and tidyverse. Along the way, you will gain insight into best practices for visualization of high-dimensional data, statistical graphics, and graphical perception. The printed book is complemented by an interactive website where readers can view movies demonstrating the examples and interact with graphics.

Spatio-Temporal Statistics with R (Hardcover): Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie Spatio-Temporal Statistics with R (Hardcover)
Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie
R1,704 Discovery Miles 17 040 Ships in 10 - 15 working days

The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.

Missing Data and Small-Area Estimation - Modern Analytical Equipment for the Survey Statistician (Paperback, 2005): Nicholas T.... Missing Data and Small-Area Estimation - Modern Analytical Equipment for the Survey Statistician (Paperback, 2005)
Nicholas T. Longford
R2,675 Discovery Miles 26 750 Ships in 18 - 22 working days

This book evolved from lectures, courses and workshops on missing data and small-area estimation that I presented during my tenure as the ?rst C- pion Fellow (2000-2002). For the Fellowship I proposed these two topics as areas in which the academic statistics could contribute to the development of government statistics, in exchange for access to the operational details and background that would inform the direction and sharpen the focus of a- demic research. After a few years of involvement, I have come to realise that the separation of 'academic' and 'industrial' statistics is not well suited to either party, and their integration is the key to progress in both branches. Most of the work on this monograph was done while I was a visiting l- turer at Massey University, Palmerston North, New Zealand. The hospitality and stimulating academic environment of their Institute of Information S- ence and Technology is gratefully acknowledged. I could not name all those who commented on my lecture notes and on the presentations themselves; apart from them, I want to thank the organisers and silent attendees of all the events, and, with a modicum of reluctance, the 'grey ?gures' who kept inquiring whether I was any nearer the completion of whatever stage I had been foolish enough to attach a date.

The Rise of Artificial Intelligence and Big Data in Pandemic Society - Crises, Risk and Sacrifice in a New World Order... The Rise of Artificial Intelligence and Big Data in Pandemic Society - Crises, Risk and Sacrifice in a New World Order (Hardcover, 1st ed. 2022)
Kazuhiko Shibuya
R3,534 Discovery Miles 35 340 Ships in 10 - 15 working days

This book presents a study of the COVID-19 pandemic using computational social scientific analysis that draws from, and employs, statistics and simulations. Combining approaches in crisis management, risk assessment and mathematical modelling, the work also draws from the philosophy of sacrifice and futurology. It makes an original contribution to the important issue of the stability of society by highlighting two significant factors: the COVID-19 crisis as a catalyst for change and the rise of AI and Big Data in managing society. It also emphasizes the nature and importance of sacrifices and the role of politics in the distribution of sacrifices. The book considers the treatment of AI and Big Data and their use to both "good" and "bad" ends, exposing the inevitability of these tools being used. Relevant to both policymakers and social scientists interested in the influence of AI and Big Data on the structure of society, the book re-evaluates the ways we think of lifestyles, economic systems and the balance of power in tandem with digital transformation.

SPSS for Starters, Part 2 (Paperback, 2012 ed.): Ton J. Cleophas, Aeilko H. Zwinderman SPSS for Starters, Part 2 (Paperback, 2012 ed.)
Ton J. Cleophas, Aeilko H. Zwinderman
R1,294 Discovery Miles 12 940 Ships in 18 - 22 working days

The first part of this title contained all statistical tests that are relevant for starters on SPSS, and included standard parametric and non-parametric tests for continuous and binary variables, regression methods, trend tests, and reliability and validity assessments of diagnostic tests. The current part 2 of this title reviews multistep methods, multivariate models, assessments of missing data, performance of diagnostic tests, meta-regression, Poisson regression, confounding and interaction, and survival analyses using log tests and segmented time-dependent Cox regression. Methods for assessing non linear models, data seasonality, distribution free methods, including Monte Carlo methods and artificial intelligence, and robust tests are also covered.

Each method of testing is explained using a data example from clinical practice, including every step in SPSS, and a text with interpretations of the results and hints convenient for data reporting. In order to facilitate the use of this cookbook the data files of the examples is made available by the editor through extras.springer.com.

Both part 1 and 2 of this title contain a minima amount of text and maximal technical details, but we believe that this property will not refrain students from mastering the SPSS software systematics, and that, instead, it will be a help to that aim. Yet, we recommend that it will used together with the textbook "Statistics Applied to Clinical Trials" (5th edition, Springer, Dordrecht 2012) and the e-books "Statistics on a Pocket Calculator Part 1 and 2 (Springer, Dordrecht, 2011 and 2012) from the same authors.

R for Stata Users (Paperback, 2010 ed.): Robert A. Muenchen, Joseph M. Hilbe R for Stata Users (Paperback, 2010 ed.)
Robert A. Muenchen, Joseph M. Hilbe
R6,550 Discovery Miles 65 500 Ships in 18 - 22 working days

Stata is the most flexible and extensible data analysis package available from a commercial vendor. R is a similarly flexible free and open source package for data analysis, with over 3,000 add-on packages available. This book shows you how to extend the power of Stata through the use of R. It introduces R using Stata terminology with which you are already familiar. It steps through more than 30 programs written in both languages, comparing and contrasting the two packages' different approaches. When finished, you will be able to use R in conjunction with Stata, or separately, to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses.

A glossary defines over 50 R terms using Stata jargon and again using more formal R terminology. The table of contents and index allow you to find equivalent R functions by looking up Stata commands and vice versa. The example programs and practice datasets for both R and Stata are available for download.

Solving ODEs with MATLAB (Hardcover, New): L. F. Shampine, I. Gladwell, S Thompson Solving ODEs with MATLAB (Hardcover, New)
L. F. Shampine, I. Gladwell, S Thompson
R3,817 Discovery Miles 38 170 Ships in 18 - 22 working days

This book is a text for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics. Prerequisites are a first course in the theory of ODEs and a survey course in numerical analysis, in addition to specific programming experience, preferably in MATLAB, and knowledge of elementary matrix theory. Professionals will also find that this useful concise reference contains reviews of technical issues and realistic and detailed examples. The programs for the examples are supplied on the accompanying web site and can serve as templates for solving other problems. Each chapter begins with a discussion of the "facts of life" for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understaning the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.

Theory of Lift - Introductory Computational Aerodynamics in MATLAB (R)/Octave (Hardcover, New): GG McBain Theory of Lift - Introductory Computational Aerodynamics in MATLAB (R)/Octave (Hardcover, New)
GG McBain
R2,883 Discovery Miles 28 830 Ships in 18 - 22 working days

Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, "Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave" takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries.

The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods.

This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages.

Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization.Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave.Companion website (www.wiley.com/go/mcbain) hosting codes and solutions.

"Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave" is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.

Computational Statistics (Paperback, 2009 ed.): James E. Gentle Computational Statistics (Paperback, 2009 ed.)
James E. Gentle
R2,550 Discovery Miles 25 500 Ships in 18 - 22 working days

Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.

The BUGS Book - A Practical Introduction to Bayesian Analysis (Paperback): David Lunn, Chris Jackson, Nicky Best, Andrew... The BUGS Book - A Practical Introduction to Bayesian Analysis (Paperback)
David Lunn, Chris Jackson, Nicky Best, Andrew Thomas, David Spiegelhalter
R1,503 Discovery Miles 15 030 Ships in 10 - 15 working days

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions-all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book's website.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Recent Advances and Trends in…
M. G. Akritas, D.N. Politis Hardcover R3,172 Discovery Miles 31 720
Predictive Modeling with SAS Enterprise…
Kattamuri S Sarma Hardcover R2,338 Discovery Miles 23 380
An Introduction to Creating Standardized…
Todd Case, Yuting Tian Hardcover R1,501 Discovery Miles 15 010
Introduction to Chemical Engineering…
Henry C. Foley Paperback R3,120 Discovery Miles 31 200
SAS Certified Specialist Prep Guide…
Sas Institute Hardcover R3,109 Discovery Miles 31 090
Essential Java for Scientists and…
Brian Hahn, Katherine Malan Paperback R1,266 Discovery Miles 12 660
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,651 Discovery Miles 16 510
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R11,427 Discovery Miles 114 270
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, … Paperback R3,015 Discovery Miles 30 150
A Physicist's Guide to Mathematica
Patrick T Tam Paperback R1,622 Discovery Miles 16 220

 

Partners