![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This book is a short, focused introduction to Mathematica, the comprehensive software system for doing mathematics. Written for the novice, this engaging book contains an explanation of essential Mathematica commands, as well as the rich Mathematica interface for preparing polished technical documents. Mathematica can be used to graph functions, solve equations, perform statistics tests, and much more. In addition, it incorporates word processing and desktop publishing features for combining mathematical computations with text and graphics, and producing polished, integrated, interactive documents. You can even use it to create documents and graphics for the Web. This book explains everything you need to know to begin using Mathematica to do all these things and more. Written for Mathematica version 3, this book can also be used with earlier versions of the software. Intermediate and advanced users may even find useful information here, especially if they are making the switch to version 3 from an earlier version.
Dieser vierte Band schliesst den Kurs "Hohere Mathematik mit Mathematica" ab. Behandelt wird die komplexe Analysis, also Funktionentheorie, und ihre fur den Praktiker wichtigen Anwendungen, Fourier- und Laplace-Transformation. Wie in den vorangegangenen Banden wird auch hier grosser Wert auf die didaktische Aufarbeitung des Mathematik-Stoffes und seine Realisierung mit Mathematica gelegt."
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R. "Its biggest advantage is that it aims only to teach R...It organizes R commands very efficiently, with much teaching guidance included. I would describe this book as being handy--it's the kind of book that you want to keep in your jacket pocket or backpack all the time, ready for use, like a Swiss Army knife." (Loveday Conquest, University of Washington) "Whilst several books focus on learning statistics in R..., the authors of this book fill a gap in the market by focusing on learning R whilst almost completely avoiding any statistical jargon...The fact that the authors have very extensive experience of teaching R to absolute beginners shines throughout." (Mark Mainwaring, Lancaster University) "Exactly what is needed...This is great, nice work. I love the ecological/biological examples; they will be an enormous help." (Andrew J. Tyne, University of Nebraska-Lincoln)
Mathematik lernen mit DERIVE entwickelt die mathematischen
Grundlagen, die in den Natur- und Ingenieurwissenschaften benotigt
werden, und ist gleichzeitig eine praktische Einfuhrung in das
Computer Algebra Programm DERIVE. Die Autoren legen auf zwei
Aspekte von DERIVE besonderen Wert: Zum einen konnen Lernende
DERIVE zu eigenen Untersuchungen nutzen, um grundlegende
mathematische Ideen zu verstehen. Andererseits dient DERIVE als
Werkzeug, um naturwissenschaftliche und technische Probleme zu
losen. Besonders nutzlich fur Lehrende und Lernende ist hierbei die
Fulle von Aufgaben, die mitsamt ihren Losungen in diesem Buch zu
finden sind.
The Mata Book: A Book for Serious Programmers and Those Who Want to Be is the book that Stata programmers have been waiting for. Mata is a serious programming language for developing small- and large-scale projects and for adding features to Stata. What makes Mata serious is that it provides structures, classes, and pointers along with matrix capabilities. The book is serious in that it covers those advanced features, and teaches them. The reader is assumed to have programming experience, but only some programming experience. That experience could be with Stata's ado language, or with Python, Java, C++, Fortran, or other languages like them. As the book says, "being serious is a matter of attitude, not current skill level or knowledge". The author of the book is William Gould, who is also the designer and original programmer of Mata, of Stata, and who also happens to be the president of StataCorp.
DERIVE: ein vielseitiges, leistungsstarkes und benutzerfreundliches Mathematikprogramm, das auf kleinen PC's zum Einsatz kommen kann. Dieses Buch zeigt die vielfaltigen Einsatzmoglichkeiten von DERIVE fur den Mathematikunterricht an Schulen und (Fach)hochschulen: von der elementaren Algebra bis zur Differenzial- und Integralrechnung. Die Beispiele fur DERIVE-Eingaben sind durch viele weiterfuhrende Aufgaben erganzt und bereichern den Unterricht."
The 18th Conference of IASC-ERS, COMPSTAT'2008,is held in Porto,P- tugal,fromAugust24thtoAugust29th2008,locallyorganisedbytheFaculty of Economics of the University of Porto. COMPSTAT is an initiative of the European Regional Section of the Int- national Association for Statistical Computing (IASC-ERS), a section of the International Statistical Institute (ISI). COMPSTAT conferences started in 1974 in Wien; previous editions of COMPSTAT were held in Berlin (2002), Prague (2004) and Rome (2006). It is one of the most prestigious world conferences in Computational Statistics, regularly attracting hundreds of - searchers and practitioners, and has gained a reputation as an ideal forum for presenting top qualitytheoretical and applied work,promoting interdis- plinary researchand establishing contacts amongstresearcherswith common interests. COMPSTAT'2008 is the ?rst edition of COMPSTAT to be hosted by a Portuguese institution. Keynote lectures are addressed by Peter Hall (Department of Mathematics and Statistics, The University of Melbourne), Heikki Mannila (Department of Computer Science, Faculty of Science, University of Helsinki) and Timo Ter. asvirta (School of Economics and Management, University of Aarhus). The conference program includes two tutorials: "Computational Methods in Finance"byJamesGentle(DepartmentofComputationalandDataSciences, George Mason University) and "Writing R Packages" by Friedrich Leisch (Institut fur .. Statistik, Ludwig-Maximilians-Universit. at). Each COMPSTAT meeting is organised with a number of topics highlighted, which lead to - vited Sessions. The Conference program includes also contributed sessions in di?erent topics (both oral communications and posters).
Vor ziemlich genau zehn Jahren stand ich (im Zusammenhang mit Stabilitatsuntersu- chungen an Hamiltonschen Systemen) vor der Aufgab, komplizierte Koordinaten- transformationen bis zu hoeheren Ordnungen zu berechnen. Nach mehrmonatigen, fruchtlosen Versuchen von Hand - und Bloecken voll Formeln - war ich dabei, die Flinte ins Kom zu werfen. Durch einen Zufall wurde ich aber von Stan Lomecki (im Militardienst!) auf das Computer-Algebra-Programm Reduce aufmerksam gemacht. Unter Ausnutzung vieler Tricks gelang mir damit tatsachlich, die Transformationen und die Stabilitatsdiskussion symbolisch zu Ende zu fuhren. Schon damals fragte ich mich, weshalb derartige Programme bei Ingenieuren und Wissenschaftlern bzw. Wissenschaftlerinnen so wenig bekannt sind. Viele Problem- stellungen dieser Disziplinen fuhren auf Rechnungen, die sich von Hand hoechstens muhevoll und mit grossem Zeitaufwand bewaltigen lassen. Mit Hilfe eines Computer- Algebra-Programms koennen sie oft rasch symbolisch geloest werden. Falls dies nicht moeglich ist, so resultiert mindestens eine Vereinfachung, bevor eventuell mit dem groe- beren Werkzeug der Numerik weitergearbeitet wird.
Learn statistical methods quickly and easily with the discovery
method
This book is a text for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics. Prerequisites are a first course in the theory of ODEs and a survey course in numerical analysis, in addition to specific programming experience, preferably in MATLAB, and knowledge of elementary matrix theory. Professionals will also find that this useful concise reference contains reviews of technical issues and realistic and detailed examples. The programs for the examples are supplied on the accompanying web site and can serve as templates for solving other problems. Each chapter begins with a discussion of the "facts of life" for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understaning the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Think you can't have fun learning statistics? Think again. "The Manga Guide to Statistics" will teach you everything you need to know about this essential discipline, while entertaining you at the same time. With its unique combination of Japanese-style comics called manga and serious educational content, the EduManga format is already a hit in Japan. In "The Manga Guide to Statistics," our heroine Rui is determined to learn about statistics to impress the dreamy Mr. Igarashi and begs her father for a tutor. Soon she's spending her Saturdays with geeky, bespectacled Mr. Yamamoto, who patiently teaches her all about the fundamentals of statistics: topics like data categorization, averages, graphing, and standard deviation. After all her studying, Rui is confident in her knowledge of statistics, including complex concepts like probability, coefficients of correlation, hypothesis tests, and tests of independence. But is it enough to impress her dream guy? Or maybe there's someone better, right in front of her? Reluctant statistics students of all ages will enjoy learning along with Rui in this charming, easy-to-read guide, which uses real-world examples like teen magazine quizzes, bowling games, test scores, and ramen noodle prices. Examples, exercises, and answer keys help you follow along and check your work. An appendix showing how to perform statistics calculations in Microsoft Excel makes it easy to put Rui's lessons into practice. This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.
Designed for engineers, mathematicians, computer scientists, financial analysts, and anyone interested in using numerical linear algebra, matrix theory, and game theory concepts to maximize efficiency in solving applied problems. The book emphasizes the solution of various types of linear programming problems by using different types of software, but includes the necessary definitions and theorems to master theoretical aspects of the topics presented. Features: Emphasizes the solution of various types of linear programming problems by using different kinds of software, e.g., MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO Provides definitions, theorems, and procedures for solving problems and all cases related to various linear programming topics Includes numerous application examples and exercises, e.g., transportation, assignment, and maximization Presents numerous topics that can be used to solve problems involving systems of linear equations, matrices, vectors, game theory, simplex method, and more.
Many professional, high-quality surveys collect data on people's behaviour, experiences, lifestyles and attitudes. The data they produce is more accessible than ever before. This book provides students with a comprehensive introduction to using this data, as well as transactional data and big data sources, in their own research projects. Here you will find all you need to know about locating, accessing, preparing and analysing secondary data, along with step-by-step instructions for using IBM SPSS Statistics. You will learn how to: Create a robust research question and design that suits secondary analysis Locate, access and explore data online Understand data documentation Check and 'clean' secondary data Manage and analyse your data to produce meaningful results Replicate analyses of data in published articles and books Using case studies and video animations to illustrate each step of your research, this book provides you with the quantitative analysis skills you'll need to pass your course, complete your research project and compete in the job market. Exercises throughout the book and on the book's companion website give you an opportunity to practice, check your understanding and work hands on with real data as you're learning.
In unserer Arbeit [ 7] werden beschrEinkte lineare Funktionale auf verschiedenen R umen stetiger Funktionen untersucht und zwar die Gultig eit von Riesz-Darstellungss tzen. W hrend wir uns dort auf stetige Funktionen beschr nken, nehmen wir hier die R ume Lebesgue-integrierbarer Funktionen hinzu. Ein Aspekt der obigen Arbeit ist der Zusammenhang zwischen dem BV[O, l]-Hausdorff-Momentenproblem und dem C[O, l]-Riesz-Dar- stellungssatz: einmal kann man den C[O, l]-Riesz-Satz durch An- wendung des BV[O, l]-Hausdorff-Momentenproblems beweisen (vgl. [20], [39]), aber umgekehrt l t sich das Hausdorff-Momentenproblem Uber den Riesz-Darstellungssatz IBsen (vgl. [19], [25]). Es stellt sich daher die Frage, ob ein hnlicher . Zusammenhang nach- gewiesen werden kann zwischen den Riesz-Darstellungss tzen fUr verschiedene R ume stetiger bzw. Lebesgue-integrierbarer Funk- tionen und gewissen Momentenproblemen mit Belegungsfunktionen aus den dualen R umen. Dazu wollen wir zun chst einmal verschiedene Funktionenr ume definieren. Fur reel Ie Zahlen a und b, a
Aufbauend auf einer frUheren Untersuchung (vgl. Nr. 2 des Literatur- Verzeichnisses) wurde am Forschungsinstitut fUr Rationalisierung ein EDV-Programmsystem entwickelt, das in dem vorliegenden Bericht seinen Niederschlag gefunden hat. Aufgabe des Programmsystems ist es, aIle im Zusammenhang mit der DurchfUhrung von Multimoment-Studien (im folgen- den MM-Studien) anfallenden Arbeiten, die maschinell ausgefUhrt werden konnen, einem Rechner zu Ubertragen. Der Name MAVAMM ist die AbkUrzung fUr MAschinelle yorbereitung und uswertung von ulti ment-Aufnahmen. Die Zielsetzung einer maschinellen Datenverarbeitung bei MM-Studien loBt sich wie folgt charakterisieren: 1. Verwirklichung einer umfassenden Rationalisierung von MM-Studien Maschinelle AusfUhrung oller formalisierbaren Arbeiten wie Auszah- len, Sortieren, Schreiben und Rechnen, die mit dem Erstellen der Aufnahmebogen, der Aufbereitung des Erhebungsmaterials und der Aus- wertung einschlieBlich der statistischen Analyse der Beobachtungs- ergebnisse verbunden sind. 2. Erweiterung der ErschlieBungstechnik und damit der Aussagemoglich- keiten von MM-Aufnahmen Nutzung verschiedener zusatzlicher Auswertungsmoglichkeiten, z.B. nach Beobachtungs-Objekten, Aufnahme-Bereichen, Aufnahme-Uhrzeit und Aufnahme-Tagen sowie Ausgabe der Ergebnisse in anschaulicher Form. Moglichkeit zum NachprUfen der modellbedingten Voraussetzun- gen fUr die Anwendung des MM-Verfahrens aufgrund der differenzier- ten Darstellung der Ergebnisse und ihrer statistischen Analyse. 3. Schnellere Bereitstellung von Untersuchungsergebnissen Die Vorbereitung von MM-Aufnahmen nimmt wenig Zeit in Anspruch und die Auswertungsergebnisse stehen unmittelbar nach AbschluB der Er- hebungen, d.h. wenn sie noch aktuell sind, zur VerfUgung. 5 4. Berechnung genauerer Auswertungsergebnisse Die bei einer manuellen Auswertung von HH-Aufnahmen maglichen Uber- tragungs-, Sortier-, Rechen- und Schreibfehler werden weitgehend ausgeschaltet.
Statistics is made simple with this award-winning guide to using R and applied statistical methods. With a clear step-by-step approach explained using real world examples, learn the practical skills you need to use statistical methods in your research from an expert with over 30 years of teaching experience. With a wealth of hands-on exercises and online resources created by the author, practice your skills using the data sets and R scripts from the book with detailed screencasts that accompany each script. This book is ideal for anyone looking to: * Complete an introductory course in statistics * Prepare for more advanced statistical courses * Gain the transferable analytical skills needed to interpret research from across the social sciences * Learn the technical skills needed to present data visually * Acquire a basic competence in the use of R and RStudio. This edition also includes a gentle introduction to Bayesian methods integrated throughout. The author has created a wide range of online resources, including: over 90 R scripts, 36 datasets, 37 screen casts, complete solutions for all exercises, and 130 multiple-choice questions to test your knowledge. |
You may like...
Vehicular Ad Hoc Networks - Futuristic…
Muhammad Arif, Guojun Wang, …
Hardcover
R3,237
Discovery Miles 32 370
Advanced Excel for Surveyors
Philip Bowcock, Natalie Bayfield
Hardcover
R2,650
Discovery Miles 26 500
Sensation and Measurement - Papers in…
H.R. Moskowitz, B. Scharf, …
Hardcover
R5,223
Discovery Miles 52 230
|