0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (8)
  • R250 - R500 (28)
  • R500+ (1,385)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software

Statistical Data Analysis Using SAS - Intermediate Statistical Methods (Paperback, 2nd ed. 2018): Mervyn G. Marasinghe, Kenneth... Statistical Data Analysis Using SAS - Intermediate Statistical Methods (Paperback, 2nd ed. 2018)
Mervyn G. Marasinghe, Kenneth J Koehler
R3,939 Discovery Miles 39 390 Ships in 18 - 22 working days

The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: * Covers SAS v9.2 and incorporates new commands * Uses SAS ODS (output delivery system) for reproduction of tables and graphics output * Presents new commands needed to produce ODS output * All chapters rewritten for clarity * New and updated examples throughout * All SAS outputs are new and updated, including graphics * More exercises and problems * Completely new chapter on analysis of nonlinear and generalized linear models * Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.

Linear Regression (Paperback, Softcover reprint of the original 1st ed. 2017): David J. Olive Linear Regression (Paperback, Softcover reprint of the original 1st ed. 2017)
David J. Olive
R3,948 Discovery Miles 39 480 Ships in 18 - 22 working days

This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.

Outlier Ensembles - An Introduction (Paperback, Softcover reprint of the original 1st ed. 2017): Charu C. Aggarwal, Saket Sathe Outlier Ensembles - An Introduction (Paperback, Softcover reprint of the original 1st ed. 2017)
Charu C. Aggarwal, Saket Sathe
R2,132 Discovery Miles 21 320 Ships in 18 - 22 working days

This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.

Statistical Disclosure Control for Microdata - Methods and Applications in R (Paperback, Softcover reprint of the original 1st... Statistical Disclosure Control for Microdata - Methods and Applications in R (Paperback, Softcover reprint of the original 1st ed. 2017)
Matthias Templ
R1,638 Discovery Miles 16 380 Ships in 18 - 22 working days

This book on statistical disclosure control presents the theory, applications and software implementation of the traditional approach to (micro)data anonymization, including data perturbation methods, disclosure risk, data utility, information loss and methods for simulating synthetic data. Introducing readers to the R packages sdcMicro and simPop, the book also features numerous examples and exercises with solutions, as well as case studies with real-world data, accompanied by the underlying R code to allow readers to reproduce all results. The demand for and volume of data from surveys, registers or other sources containing sensible information on persons or enterprises have increased significantly over the last several years. At the same time, privacy protection principles and regulations have imposed restrictions on the access and use of individual data. Proper and secure microdata dissemination calls for the application of statistical disclosure control methods to the da ta before release. This book is intended for practitioners at statistical agencies and other national and international organizations that deal with confidential data. It will also be interesting for researchers working in statistical disclosure control and the health sciences.

Bayesian Statistics in Action - BAYSM 2016, Florence, Italy, June 19-21 (Paperback, Softcover reprint of the original 1st ed.... Bayesian Statistics in Action - BAYSM 2016, Florence, Italy, June 19-21 (Paperback, Softcover reprint of the original 1st ed. 2017)
Raffaele Argiento, Ettore Lanzarone, Isadora Antoniano Villalobos, Alessandra Mattei
R4,661 Discovery Miles 46 610 Ships in 18 - 22 working days

This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. The meeting provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field. The contributions develop and apply Bayesian methods in a variety of fields, ranging from the traditional (e.g., biostatistics and reliability) to the most innovative ones (e.g., big data and networks).

Big and Complex Data Analysis - Methodologies and Applications (Paperback, Softcover reprint of the original 1st ed. 2017): S.... Big and Complex Data Analysis - Methodologies and Applications (Paperback, Softcover reprint of the original 1st ed. 2017)
S. Ejaz Ahmed
R2,455 Discovery Miles 24 550 Ships in 18 - 22 working days

This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.

Applied Statistics for Business and Management using Microsoft Excel (Paperback, 2013 ed.): Linda Herkenhoff, John Fogli Applied Statistics for Business and Management using Microsoft Excel (Paperback, 2013 ed.)
Linda Herkenhoff, John Fogli
R2,970 Discovery Miles 29 700 Ships in 10 - 15 working days

Applied Business Statistics for Business and Management using Microsoft Excel is the first book to illustrate the capabilities of Microsoft Excel to teach applied statistics effectively. It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical statistical problems in industry. If understanding statistics isn't your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in statistics courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Applied Business Statistics for Business and Management capitalizes on these improvements by teaching students and practitioners how to apply Excel to statistical techniques necessary in their courses and workplace. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand business problems. Practice problems are provided at the end of each chapter with their solutions.

Computational Information Geometry - For Image and Signal Processing (Paperback, Softcover reprint of the original 1st ed.... Computational Information Geometry - For Image and Signal Processing (Paperback, Softcover reprint of the original 1st ed. 2017)
Frank Nielsen, Frank Critchley, Christopher T. J. Dodson
R3,113 Discovery Miles 31 130 Ships in 18 - 22 working days

This book focuses on the application and development of information geometric methods in the analysis, classification and retrieval of images and signals. It provides introductory chapters to help those new to information geometry and applies the theory to several applications. This area has developed rapidly over recent years, propelled by the major theoretical developments in information geometry, efficient data and image acquisition and the desire to process and interpret large databases of digital information. The book addresses both the transfer of methodology to practitioners involved in database analysis and in its efficient computational implementation.

Algorithms for Data Science (Paperback, Softcover reprint of the original 1st ed. 2016): Brian Steele, John Chandler, Swarna... Algorithms for Data Science (Paperback, Softcover reprint of the original 1st ed. 2016)
Brian Steele, John Chandler, Swarna Reddy
R1,791 Discovery Miles 17 910 Ships in 18 - 22 working days

This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Computational Probability - Algorithms and Applications in the Mathematical Sciences (Paperback, Softcover reprint of the... Computational Probability - Algorithms and Applications in the Mathematical Sciences (Paperback, Softcover reprint of the original 2nd ed. 2017)
John H. Drew, Diane L. Evans, Andrew G. Glen, Lawrence M. Leemis
R3,347 Discovery Miles 33 470 Ships in 18 - 22 working days

This new edition includes the latest advances and developments in computational probability involving A Probability Programming Language (APPL). The book examines and presents, in a systematic manner, computational probability methods that encompass data structures and algorithms. The developed techniques address problems that require exact probability calculations, many of which have been considered intractable in the past. The book addresses the plight of the probabilist by providing algorithms to perform calculations associated with random variables. Computational Probability: Algorithms and Applications in the Mathematical Sciences, 2nd Edition begins with an introductory chapter that contains short examples involving the elementary use of APPL. Chapter 2 reviews the Maple data structures and functions necessary to implement APPL. This is followed by a discussion of the development of the data structures and algorithms (Chapters 3-6 for continuous random variables and Chapters 7-9 for discrete random variables) used in APPL. The book concludes with Chapters 10-15 introducing a sampling of various applications in the mathematical sciences. This book should appeal to researchers in the mathematical sciences with an interest in applied probability and instructors using the book for a special topics course in computational probability taught in a mathematics, statistics, operations research, management science, or industrial engineering department.

Computational Probability Applications (Paperback, Softcover reprint of the original 1st ed. 2017): Andrew G. Glen, Lawrence M.... Computational Probability Applications (Paperback, Softcover reprint of the original 1st ed. 2017)
Andrew G. Glen, Lawrence M. Leemis
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is unified by the use of A Probability Programming Language (APPL) to achieve the modeling objectives. APPL, as a research tool, enables a probabilist or statistician the ability to explore new ideas, methods, and models. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. Computational Probability Applications is comprised of fifteen chapters, each presenting a specific application of computational probability using the APPL modeling and computer language. The chapter topics include using inverse gamma as a survival distribution, linear approximations of probability density functions, and also moment-ratio diagrams for univariate distributions. These works highlight interesting examples, often done by undergraduate students and graduate students that can serve as templates for future work. In addition, this book should appeal to researchers and practitioners in a range of fields including probability, statistics, engineering, finance, neuroscience, and economics.

Recent Advances in Robust Statistics: Theory and Applications (Paperback, Softcover reprint of the original 1st ed. 2016):... Recent Advances in Robust Statistics: Theory and Applications (Paperback, Softcover reprint of the original 1st ed. 2016)
Claudio Agostinelli, Ayanendranath Basu, Peter Filzmoser, Diganta Mukherjee
R4,751 Discovery Miles 47 510 Ships in 18 - 22 working days

This book offers a collection of recent contributions and emerging ideas in the areas of robust statistics presented at the International Conference on Robust Statistics 2015 (ICORS 2015) held in Kolkata during 12-16 January, 2015. The book explores the applicability of robust methods in other non-traditional areas which includes the use of new techniques such as skew and mixture of skew distributions, scaled Bregman divergences, and multilevel functional data methods; application areas being circular data models and prediction of mortality and life expectancy. The contributions are of both theoretical as well as applied in nature. Robust statistics is a relatively young branch of statistical sciences that is rapidly emerging as the bedrock of statistical analysis in the 21st century due to its flexible nature and wide scope. Robust statistics supports the application of parametric and other inference techniques over a broader domain than the strictly interpreted model scenarios employed in classical statistical methods. The aim of the ICORS conference, which is being organized annually since 2001, is to bring together researchers interested in robust statistics, data analysis and related areas. The conference is meant for theoretical and applied statisticians, data analysts from other fields, leading experts, junior researchers and graduate students. The ICORS meetings offer a forum for discussing recent advances and emerging ideas in statistics with a focus on robustness, and encourage informal contacts and discussions among all the participants. They also play an important role in maintaining a cohesive group of international researchers interested in robust statistics and related topics, whose interactions transcend the meetings and endure year round.

Big Data Analytics - Methods and Applications (Paperback, Softcover reprint of the original 1st ed. 2016): Saumyadipta Pyne,... Big Data Analytics - Methods and Applications (Paperback, Softcover reprint of the original 1st ed. 2016)
Saumyadipta Pyne, B.L.S.Prakasa Rao, S. B. Rao
R4,499 Discovery Miles 44 990 Ships in 18 - 22 working days

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

Multivariate Analysis with LISREL (Paperback, Softcover reprint of the original 1st ed. 2016): Karl G. Joereskog, Ulf H.... Multivariate Analysis with LISREL (Paperback, Softcover reprint of the original 1st ed. 2016)
Karl G. Joereskog, Ulf H. Olsson, Fan Y. Wallentin
R4,189 Discovery Miles 41 890 Ships in 18 - 22 working days

This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.

Digital Technologies in Designing Mathematics Education Tasks - Potential and Pitfalls (Paperback, Softcover reprint of the... Digital Technologies in Designing Mathematics Education Tasks - Potential and Pitfalls (Paperback, Softcover reprint of the original 1st ed. 2017)
Allen Leung, Anna Baccaglini-Frank
R5,626 Discovery Miles 56 260 Ships in 18 - 22 working days

This book is about the role and potential of using digital technology in designing teaching and learning tasks in the mathematics classroom. Digital technology has opened up different new educational spaces for the mathematics classroom in the past few decades and, as technology is constantly evolving, novel ideas and approaches are brewing to enrich these spaces with diverse didactical flavors. A key issue is always how technology can, or cannot, play epistemic and pedagogic roles in the mathematics classroom. The main purpose of this book is to explore mathematics task design when digital technology is part of the teaching and learning environment. What features of the technology used can be capitalized upon to design tasks that transform learners' experiential knowledge, gained from using the technology, into conceptual mathematical knowledge? When do digital environments actually bring an essential (educationally, speaking) new dimension to classroom activities? What are some pragmatic and semiotic values of the technology used? These are some of the concerns addressed in the book by expert scholars in this area of research in mathematics education. This volume is the first devoted entirely to issues on designing mathematical tasks in digital teaching and learning environments, outlining different current research scenarios.

Nonparametric Statistics - 2nd ISNPS, Cadiz, June 2014 (Paperback, Softcover reprint of the original 1st ed. 2016): Ricardo... Nonparametric Statistics - 2nd ISNPS, Cadiz, June 2014 (Paperback, Softcover reprint of the original 1st ed. 2016)
Ricardo Cao, Wenceslao Gonzalez-Manteiga, Juan Romo
R4,011 Discovery Miles 40 110 Ships in 18 - 22 working days

This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cadiz (Spain) between June 11-16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers from around the globe, and contribute to the further development of the field.

Seminal Contributions to Modelling and Simulation - 30 Years of the European Council of Modelling and Simulation (Paperback,... Seminal Contributions to Modelling and Simulation - 30 Years of the European Council of Modelling and Simulation (Paperback, Softcover reprint of the original 1st ed. 2016)
Khalid Al-Begain, Andrzej Bargiela
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

Marking the 30th anniversary of the European Conference on Modelling and Simulation (ECMS), this inspirational text/reference reviews significant advances in the field of modelling and simulation, as well as key applications of simulation in other disciplines. The broad-ranging volume presents contributions from a varied selection of distinguished experts chosen from high-impact keynote speakers and best paper winners from the conference, including a Nobel Prize recipient, and the first president of the European Council for Modelling and Simulation (also abbreviated to ECMS). This authoritative book will be of great value to all researchers working in the field of modelling and simulation, in addition to scientists from other disciplines who make use of modelling and simulation approaches in their work.

Introduction to Nonparametric Statistics for the Biological Sciences Using R (Paperback, Softcover reprint of the original 1st... Introduction to Nonparametric Statistics for the Biological Sciences Using R (Paperback, Softcover reprint of the original 1st ed. 2016)
Thomas W. MacFarland, Jan M. Yates
R1,762 Discovery Miles 17 620 Ships in 18 - 22 working days

This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.

Programming for Computations  - MATLAB/Octave - A Gentle Introduction to Numerical Simulations with MATLAB/Octave (Paperback,... Programming for Computations - MATLAB/Octave - A Gentle Introduction to Numerical Simulations with MATLAB/Octave (Paperback, Softcover reprint of the original 1st ed. 2016)
Svein Linge, Hans Petter Langtangen
R2,242 Discovery Miles 22 420 Ships in 18 - 22 working days

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Programming for Computations - Python - A Gentle Introduction to Numerical Simulations with Python (Paperback, Softcover... Programming for Computations - Python - A Gentle Introduction to Numerical Simulations with Python (Paperback, Softcover reprint of the original 1st ed. 2016)
Svein Linge, Hans Petter Langtangen
R1,525 Discovery Miles 15 250 Ships in 18 - 22 working days

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

An Introduction to Statistics with Python - With Applications in the Life Sciences (Paperback, Softcover reprint of the... An Introduction to Statistics with Python - With Applications in the Life Sciences (Paperback, Softcover reprint of the original 1st ed. 2016)
Thomas Haslwanter
R2,143 Discovery Miles 21 430 Ships in 18 - 22 working days

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

Modeling Discrete Time-to-Event Data (Paperback, Softcover reprint of the original 1st ed. 2016): Gerhard Tutz, Matthias Schmid Modeling Discrete Time-to-Event Data (Paperback, Softcover reprint of the original 1st ed. 2016)
Gerhard Tutz, Matthias Schmid
R3,292 Discovery Miles 32 920 Ships in 18 - 22 working days

This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.

Time Series Analysis and Forecasting - Selected Contributions from the ITISE Conference (Paperback, Softcover reprint of the... Time Series Analysis and Forecasting - Selected Contributions from the ITISE Conference (Paperback, Softcover reprint of the original 1st ed. 2016)
Ignacio Rojas, Hector Pomares
R5,042 Discovery Miles 50 420 Ships in 18 - 22 working days

This volume presents selected peer-reviewed contributions from The International Work-Conference on Time Series, ITISE 2015, held in Granada, Spain, July 1-3, 2015. It discusses topics in time series analysis and forecasting, advanced methods and online learning in time series, high-dimensional and complex/big data time series as well as forecasting in real problems. The International Work-Conferences on Time Series (ITISE) provide a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.

Examples in Parametric Inference with R (Paperback, Softcover reprint of the original 1st ed. 2016): Ulhas Jayram Dixit Examples in Parametric Inference with R (Paperback, Softcover reprint of the original 1st ed. 2016)
Ulhas Jayram Dixit
R2,979 Discovery Miles 29 790 Ships in 18 - 22 working days

This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability, will greatly benefit from this book. Students are expected to know matrix algebra, calculus, probability and distribution theory before beginning this course. Presenting a wealth of relevant solved and unsolved problems, the book offers an excellent tool for teachers and instructors who can assign homework problems from the exercises, and students will find the solved examples hugely beneficial in solving the exercise problems.

Classification, (Big) Data Analysis and Statistical Learning (Paperback, 1st ed. 2018): Francesco Mola, Claudio Conversano,... Classification, (Big) Data Analysis and Statistical Learning (Paperback, 1st ed. 2018)
Francesco Mola, Claudio Conversano, Maurizio Vichi
R3,519 Discovery Miles 35 190 Ships in 18 - 22 working days

This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8-10, 2015.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Entity-Oriented Search
Krisztian Balog Hardcover R1,549 Discovery Miles 15 490
An Introduction to Creating Standardized…
Todd Case, Yuting Tian Hardcover R1,501 Discovery Miles 15 010
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh Hardcover R11,427 Discovery Miles 114 270
Spatial Regression Analysis Using…
Daniel A. Griffith, Yongwan Chun, … Paperback R3,015 Discovery Miles 30 150
Predictive Modeling with SAS Enterprise…
Kattamuri S Sarma Hardcover R2,338 Discovery Miles 23 380
Simulating Data with SAS (Hardcover…
Rick Wicklin Hardcover R1,651 Discovery Miles 16 510
SAS Certified Professional Prep Guide…
Sas Institute Hardcover R3,329 Discovery Miles 33 290
Introduction to Chemical Engineering…
Henry C. Foley Paperback R3,120 Discovery Miles 31 200
Portfolio and Investment Analysis with…
John B. Guerard, Ziwei Wang, … Hardcover R2,322 Discovery Miles 23 220
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas Hardcover R1,530 Discovery Miles 15 300

 

Partners