![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Computer-Aided Control Systems Design: Practical Applications Using MATLAB (R) and Simulink (R) supplies a solid foundation in applied control to help you bridge the gap between control theory and its real-world applications. Working from basic principles, the book delves into control systems design through the practical examples of the ALSTOM gasifier system in power stations and underwater robotic vehicles in the marine industry. It also shows how powerful software such as MATLAB (R) and Simulink (R) can aid in control systems design. Make Control Engineering Come Alive with Computer-Aided Software Emphasizing key aspects of the design process, the book covers the dynamic modeling, control structure design, controller design, implementation, and testing of control systems. It begins with the essential ideas of applied control engineering and a hands-on introduction to MATLAB and Simulink. It then discusses the analysis, model order reduction, and controller design for a power plant and the modeling, simulation, and control of a remotely operated vehicle (ROV) for pipeline tracking. The author explains how to obtain the ROV model and verify it by using computational fluid dynamic software before designing and implementing the control system. In addition, the book details the nonlinear subsystem modeling and linearization of the ROV at vertical plane equilibrium points. Throughout, the author delineates areas for further study. Appendices provide additional information on various simulation models and their results. Learn How to Perform Simulations on Real Industry Systems A step-by-step guide to computer-aided applied control design, this book supplies the knowledge to help you deal with control problems in industry. It is a valuable reference for anyone who wants a better understanding of the theory and practice of basic control systems design, analysis, and implementation.
Metrics are a hot topic. Executive leadership, boards of directors, management, and customers are all asking for data-based decisions. As a result, many managers, professionals, and change agents are asked to develop metrics, but have no clear idea of how to produce meaningful ones. Wouldn't it be great to have a simple explanation of how to collect, analyze, report, and use measurements to improve your organization? Metrics: How to Improve Key Business Results provides that explanation and the tools you'll need to make your organization more effective. Not only does the book explain the why of metrics, but it walks you through a step-by-step process for creating a report card that provides a clear picture of organizational health and how well you satisfy customer needs. Metrics will help you to measure the right things, the right way - the first time. No wasted effort, no chasing data. The report card provides a simple tool for viewing the health of your organization, from the outside in.You will learn how to measure the key components of the report card and thereby improve real measures of business success, like repeat customers, customer loyalty, and word-of-mouth advertising.This book: * Provides a step-by-step guide for building an organizational effectiveness report card * Takes you from identifying key services and products and using metrics, to determining business strategy * Provides examples of how to identify, collect, analyze, and report metrics that will be immediately useful for improving all aspects of the enterprise, including IT What you'll learn * Understand the difference between data, measures, information, and metrics * Identify root performance questions to ensure you build the right metrics * Develop meaningful and accurate metrics using concrete, easy-to-follow instructions * Avoid the high risks that come with collecting, analyzing, reporting, and using complex data * Formulate practical answers to data-based questions * Select and use the proper tools for creating, implementing, and using metrics * Learn one of the most powerful methods yet invented for improving organizational results Who this book is for Metrics: How to Improve Key Business Results was written for senior managers who need to improve key results.Equally, the book is for the department heads, middle managers, analysts, IT professionals, and change agents responsible for collecting, analyzing, and reporting metrics. Finally, it's for those who have to chase data and find meaningful answers to the interesting questions executives ponder. Table of Contents * Introduction: Who, What, Where, When, Why, and How You Use Metrics * Establishing a Common Language * Where to Begin: Planning a Good Metric * Using Metrics as Indicators * Using the Answer Key * Start with Effectiveness * Triangulation: Essential to Creating Effective Metrics * Expectations: How to View Data in a Meaningful Way * Creating and Interpreting the Metrics Report Card * Final Product: the Metrics Report Card * Employing Advanced Metrics * Creating the Service Catalog * Establishing Standards and Benchmarks * Respecting the Power of Metrics * Avoiding the Research Trap * Embracing Your Organization's Uniqueness * Appendix: Metrics Tools to Use and Useful Resources
PAMIR (Parameterized Adaptive Multidimensional Integration Routines) is a suite of Fortran programs for multidimensional numerical integration over hypercubes, simplexes, and hyper-rectangles in general dimension p, intended for use by physicists, applied mathematicians, computer scientists, and engineers. The programs, which are available on the internet at www.pamir-integrate.com and are free for non-profit research use, are capable of following localized peaks and valleys of the integrand. Each program comes with a Message-Passing Interface (MPI) parallel version for cluster use as well as serial versions.The first chapter presents introductory material, similar to that on the PAMIR website, and the next is a "manual" giving much more detail on the use of the programs than is on the website. They are followed by many examples of performance benchmarks and comparisons with other programs, and a discussion of the computational integration aspects of PAMIR, in comparison with other methods in the literature. The final chapter provides details of the construction of the algorithms, while the Appendices give technical details and certain mathematical derivations.
CUDA is now the dominant language used for programming GPUs, one of the most exciting hardware developments of recent decades. With CUDA, you can use a desktop PC for work that would have previously required a large cluster of PCs or access to a HPC facility. As a result, CUDA is increasingly important in scientific and technical computing across the whole STEM community, from medical physics and financial modelling to big data applications and beyond. This unique book on CUDA draws on the author's passion for and long experience of developing and using computers to acquire and analyse scientific data. The result is an innovative text featuring a much richer set of examples than found in any other comparable book on GPU computing. Much attention has been paid to the C++ coding style, which is compact, elegant and efficient. A code base of examples and supporting material is available online, which readers can build on for their own projects.
Each chapter consists of basic statistical theory, simple examples of S-PLUS code, plus more complex examples of S-PLUS code, and exercises. All data sets are taken from genuine medical investigations and will be available on a web site. The examples in the book contain extensive graphical analysis to highlight one of the prime features of S-PLUS. Written with few details of S-PLUS and less technical descriptions, the book concentrates solely on medical data sets, demonstrating the flexibility of S-PLUS and its huge advantages, particularly for applied medical statisticians.
The theory of U-statistics goes back to the fundamental work of Hoeffding 1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc."
The articles that comprise this distinguished annual volume for
the Advances in Mechanics and Mathematics series have been written
in honor of Gilbert Strang, a world renowned mathematician and
exceptional person. Written by leading experts in complementarity,
duality, global optimization, and quantum computations, this
collection reveals the beauty of these mathematical disciplines and
investigates recent developments in global optimization, nonconvex
and nonsmooth analysis, nonlinear programming, theoretical and
engineering mechanics, large scale computation, quantum algorithms
and computation, and information theory.
Most global optimization literature focuses on theory. This book, however, contains descriptions of new implementations of general-purpose or problem-specific global optimization algorithms. It discusses existing software packages from which the entire community can learn. The contributors are experts in the discipline of actually getting global optimization to work, and the book provides a source of ideas for people needing to implement global optimization software.
This book covers a highly relevant and timely topic that is of wide interest, especially in finance, engineering and computational biology. The introductory material on simulation and stochastic differential equation is very accessible and will prove popular with many readers. While there are several recent texts available that cover stochastic differential equations, the concentration here on inference makes this book stand out. No other direct competitors are known to date. With an emphasis on the practical implementation of the simulation and estimation methods presented, the text will be useful to practitioners and students with minimal mathematical background. What's more, because of the many R programs, the information here is appropriate for many mathematically well educated practitioners, too.
There are many books that are excellent sources of knowledge about individual stastical tools (survival models, general linear models, etc.), but the art of data analysis is about choosing and using multiple tools. In the words of Chatfield ..".students typically know the technical details of regressin for example, but not necessarily when and how to apply it. This argues the need for a better balance in the literature and in statistical teaching between techniques and problem solving strategies." Whether analyzing risk factors, adjusting for biases in observational studies, or developing predictive models, there are common problems that few regression texts address. For example, there are missing data in the majority of datasets one is likely to encounter (other than those used in textbooks!) but most regression texts do not include methods for dealing with such data effectively, and texts on missing data do not cover regression modeling.
A guide to using S environments to perform statistical analyses providing both an introduction to the use of S and a course in modern statistical methods. The emphasis is on presenting practical problems and full analyses of real data sets.
This book provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, pseudocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America.
Although statistical design is one of the oldest branches of statistics, its importance is ever increasing, especially in the face of the data flood that often faces statisticians. It is important to recognize the appropriate design, and to understand how to effectively implement it, being aware that the default settings from a computer package can easily provide an incorrect analysis. The goal of this book is to describe the principles that drive good design, paying attention to both the theoretical background and the problems arising from real experimental situations. Designs are motivated through actual experiments, ranging from the timeless agricultural randomized complete block, to microarray experiments, which naturally lead to split plot designs and balanced incomplete blocks.
Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.
Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all."
Optical Scanning Holography is an exciting new field with many potential novel applications. This book contains tutorials, research materials, as well as new ideas and insights that will be useful for those working in the field of optics and holography. The book has been written by one of the leading researchers in the field. It covers the basic principles of the topic which will make the book relevant for years to come.
Applied statisticians often need to perform analyses of multivariate data; for these they will typically use one of the statistical software packages, S-Plus or R. This book sets out how to use these packages for these analyses in a concise and easy-to-use way, and will save users having to buy two books for the job. The author is well-known for this kind of book, and so buyers will trust that he 's got it right.
In many fields of modern mathematics specialised scientific
software becomes increasingly important. Hence, tremendous effort
is taken by numerous groups all over the world to develop
appropriate solutions.
Based on the ontology and semantics of algebra, the computer algebra system Magma enables users to rapidly formulate and perform calculations in abstract parts of mathematics. Edited by the principal designers of the program, this book explores Magma. Coverage ranges from number theory and algebraic geometry, through representation theory and group theory to discrete mathematics and graph theory. Includes case studies describing computations underpinning new theoretical results.
The first edition was released in 1996 and has sold close to 2200 copies. Provides an up-to-date comprehensive treatment of MDS, a statistical technique used to analyze the structure of similarity or dissimilarity data in multidimensional space. The authors have added three chapters and exercise sets. The text is being moved from SSS to SSPP. The book is suitable for courses in statistics for the social or managerial sciences as well as for advanced courses on MDS. All the mathematics required for more advanced topics is developed systematically in the text.
Although there are currently a wide variety of software packages suitable for the modern statistician, R has the triple advantage of being comprehensive, widespread, and free. Published in 2008, the second edition of Statistiques avec R enjoyed great success as an R guidebook in the French-speaking world. Translated and updated, R for Statistics includes a number of expanded and additional worked examples. Organized into two sections, the book focuses first on the R software, then on the implementation of traditional statistical methods with R. Focusing on the R software, the first section covers:
The second section of the book presents R methods for a wide range of traditional statistical data processing techniques, including:
After a short presentation of the method, the book explicitly details the R command lines and gives commented results. Accessible to novices and experts alike, R for Statistics is a clear and enjoyable resource for any scientist. Datasets and all the results described in this book are available on the book s webpage at http: //www.agrocampus-ouest.fr/math/RforStat
Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the "average" patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author's point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.
The contributions in this book state the complementary rather than competitive relationship between Probability and Fuzzy Set Theory and allow solutions to real life problems with suitable combinations of both theories.
Multivariate Survival Analysis and Competing Risks introduces univariate survival analysis and extends it to the multivariate case. It covers competing risks and counting processes and provides many real-world examples, exercises, and R code. The text discusses survival data, survival distributions, frailty models, parametric methods, multivariate data and distributions, copulas, continuous failure, parametric likelihood inference, and non- and semi-parametric methods. There are many books covering survival analysis, but very few that cover the multivariate case in any depth. Written for a graduate-level audience in statistics/biostatistics, this book includes practical exercises and R code for the examples. The author is renowned for his clear writing style, and this book continues that trend. It is an excellent reference for graduate students and researchers looking for grounding in this burgeoning field of research.
This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or
professional workshops on multilevel, longitudinal, latent variable
modeling, multivariate statistics, and/or advanced quantitative
techniques taught in psychology, business, education, health, and
sociology, this practical workbook also appeals to researchers in
these fields. An excellent follow up to the authors' highly
successful Multilevel and Longitudinal Modeling with IBM SPSS and
Introduction to Multilevel Modeling Techniques, 2nd Edition, this
book can also be used with any multilevel and/or longitudinal book
or as a stand-alone text introducing multilevel modeling with
categorical outcomes. |
![]() ![]() You may like...
Modeling Semantic Web Services - The Web…
Jos De Bruijn, Mick Kerrigan, …
Hardcover
R1,527
Discovery Miles 15 270
Music Through Fourier Space - Discrete…
Emmanuel Amiot
Hardcover
Applications of Artificial Intelligence…
Allam Hamdan, Aboul Ella Hassanien, …
Hardcover
R7,016
Discovery Miles 70 160
Programmable Logic Controllers - Pearson…
James Rehg, Glenn Sartori
Paperback
R2,337
Discovery Miles 23 370
Modern Industrial IoT, Big Data and…
Victor Chang, Muthu Ramachandran, …
Hardcover
R7,010
Discovery Miles 70 100
Optimal Trajectory Planning and Train…
Yihui Wang, Bin Ning, …
Hardcover
Green Internet of Things Sensor Networks…
Adamu Murtala Zungeru, Joseph M. Chuma, …
Hardcover
R4,102
Discovery Miles 41 020
Small-Signal Stability Analysis of Power…
Wenjuan Du, Haifeng Wang, …
Hardcover
R2,925
Discovery Miles 29 250
|