Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
Highlighting the latest advances in nonparametric and semiparametric statistics, this book gathers selected peer-reviewed contributions presented at the 4th Conference of the International Society for Nonparametric Statistics (ISNPS), held in Salerno, Italy, on June 11-15, 2018. It covers theory, methodology, applications and computational aspects, addressing topics such as nonparametric curve estimation, regression smoothing, models for time series and more generally dependent data, varying coefficient models, symmetry testing, robust estimation, and rank-based methods for factorial design. It also discusses nonparametric and permutation solutions for several different types of data, including ordinal data, spatial data, survival data and the joint modeling of both longitudinal and time-to-event data, permutation and resampling techniques, and practical applications of nonparametric statistics. The International Society for Nonparametric Statistics is a unique global organization, and its international conferences are intended to foster the exchange of ideas and the latest advances and trends among researchers from around the world and to develop and disseminate nonparametric statistics knowledge. The ISNPS 2018 conference in Salerno was organized with the support of the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and the University of Salerno.
Written specifically for those with no prior programming experience and minimal quantitative training, this accessible text walks behavioral science students and researchers through the process of programming using MATLAB. The book explores examples, terms, and programming needs relevant to those in the behavioral sciences and helps readers perform virtually any computational function in solving their research problems. Principles are illustrated with usable code. Each chapter opens with a list of objectives followed by new commands required to accomplish those goals. These objectives also serve as a reference to help readers easily relocate a section of interest. Sample code and output and chapter problems demonstrate how to write a program and explore a model so readers can see the results obtained using different equations and values. A web site provides solutions to selected problems and the book's program code output and examples so readers can manipulate them as needed. The outputs on the website have color, motion, and sound. Highlights of the new edition include: *Updated to reflect changes in the most recent version of MATLAB, including special tricks and new functions. *More information on debugging and common errors and more basic problems in the rudiments of MATLAB to help novice users get up and running more quickly. *A new chapter on Psychtoolbox, a suite of programs specifically geared to behavioral science research. *A new chapter on Graphical User Interfaces (GUIs) for user-friendly communication. *Increased emphasis on pre-allocation of memory, recursion, handles, and matrix algebra operators. The book opens with an overview of what is to come and tips on how to write clear programs followed by pointers for interacting with MATLAB, including its commands and how to read error messages. The matrices chapter reviews how to store and access data. Chapter 4 examines how to carry out calculations followed by a review of how to perform various actions depending on the conditions. The chapter on input and output demonstrates how to design programs to create dialogs with users (e.g., participants in studies) and read and write data to and from external files. Chapter 7 reviews the data types available in MATLAB. Readers learn how to write a program as a stand-alone module in Chapter 8. In Chapters 9 and 10 readers learn how to create line and bar graphs or reshape images. Readers learn how to create animations and sounds in Chapter 11. The book concludes with tips on how to use MATLAB with applications such as GUIs and Psychtoolbox. Intended as a primary text for Matlab courses for advanced undergraduate and/or graduate students in experimental and cognitive psychology and/or neuroscience as well as a supplementary text for labs in data (statistical) analysis, research methods, and computational modeling (programming), the book also appeals to individual researchers in these disciplines who wish to get up and running in MATLAB.
A step-by-step approach to problem-solving techniques using SPSS(R) in the fields of sports science and physical education Featuring a clear and accessible approach to the methods, processes, and statistical techniques used in sports science and physical education, Sports Research with Analytical Solution using SPSS(R) emphasizes how to conduct and interpret a range of statistical analysis using SPSS. The book also addresses issues faced by research scholars in these fields by providing analytical solutions to various research problems without reliance on mathematical rigor. Logically arranged to cover both fundamental and advanced concepts, the book presents standard univariate and complex multivariate statistical techniques used in sports research such as multiple regression analysis, discriminant analysis, cluster analysis, and factor analysis. The author focuses on the treatment of various parametric and nonparametric statistical tests, which are shown through the techniques and interpretations of the SPSS outputs that are generated for each analysis. Sports Research with Analytical Solution using SPSS(R) also features: * Numerous examples and case studies to provide readers with practical applications of the analytical concepts and techniques * Plentiful screen shots throughout to help demonstrate the implementation of SPSS outputs * Illustrative studies with simulated realistic data to clarify the analytical techniques covered * End-of-chapter short answer questions, multiple choice questions, assignments, and practice exercises to help build a better understanding of the presented concepts * A companion website with associated SPSS data files and PowerPoint(R) presentations for each chapter Sports Research with Analytical Solution using SPSS(R) is an excellent textbook for upper-undergraduate, graduate, and PhD-level courses in research methods, kinesiology, sports science, medicine, nutrition, health education, and physical education. The book is also an ideal reference for researchers and professionals in the fields of sports research, sports science, physical education, and social sciences, as well as anyone interested in learning SPSS.
Until recently, acquiring a background in the basic methodological principles that apply to most types of investigations meant struggling to obtain results through laborious calculations. The advent of statistical software packages has removed much of the tedium and many of the errors of manual calculations and allowed a marked increase in the depth and sophistication of analyses. Although most statistics classes now incorporate some instruction in using a statistics package, most introductory texts do not. Quantitative Investigations in the Biosciences using MINITAB fills this void by providing an introduction to investigative methods that, in addition to outlining statistical principles and describing methods of calculations, also presents essential commands and interprets output from the statistics package MINITAB. The author introduces the three basic elements of investigations-design, analysis, and reporting-using an extremely accessible approach that keeps mathematical detail to a minimum. He groups statistical tests according to the type of problem they are used to examine, such as comparisons, sequential relationships, and associations. Quantitative Investigations in the Biosciences using MINITAB draws techniques and examples from a variety of subjects, ranging from physiology and biochemistry through to ecology, behavioral sciences, medicine, agriculture and horticulture, and complements the mathematical results with formal conclusions for all of the worked examples. It thus provides an ideal handbook for anyone in virtually any field who wants to apply statistical techniques to their investigations.
Michael Mitchell's A Visual Guide to Stata Graphics, Fourth Edition provides an essential introduction and reference for Stata graphics. The fourth edition retains the features that made the first three editions so useful: A complete guide to Stata's graph command Exhaustive examples of customized graphs Visual indexing of features-just look for a picture that matches what you want to do This edition includes new discussions of color, Unicode characters, export formats, sizing of graph elements, and schemes. The section on colors has been greatly expanded to include over 50 examples that demonstrate how to modify colors, add transparency, and change intensity. In the discussion of text modifications, Mitchell now shows how to include Unicode characters such as Greek letters, symbols, and emojis. New examples have also been added that show how to change the size of graph elements such as text, markers, and line widths using both absolute units (points, inches, and centimeters) as well as relative units (line large or *2 for two times the original size). Finally, the look of graphs throughout the book has changed-most graphs are now created using a common updated scheme. The book's visual style makes it easy to find exactly what you need. A color-coded, visual table of contents runs along the edge of every page and shows readers exactly where they are in the book. You can see the color-coded chapter tabs without opening the book, providing quick visual access to each chapter. The heart of each chapter is a series of entries that are typically formatted three to a page. Each entry shows a graph command (with the emphasized portion of the command highlighted in red), the resulting graph, a description of what is being done, and the dataset used. Because every feature, option, and edit is demonstrated with a graph, you can often flip through a section of the book to find exactly the effect you are seeking. The book begins with an introduction to Stata graphs that includes an overview of graphs types, schemes, and options and the process of building a graph. Then, it turns to detailed discussions of many graph types-scatterplots, regression fit plots, line plots, contour plots, bar graphs, box plots, and many others. Mitchell shows how to create each type of graph and how to use options to control the look of the graph. Because Stata's graph command will let you customize any aspect of the graph, Mitchell spends ample time showing you the most valuable options for obtaining the look you want. If you are in a hurry to discover one special option, you can skim the chapter until you see the effect you want and then glance at the command to see what is highlighted in red. After focusing on specific types of graphs, Mitchell undertakes an in-depth presentation of the options available across almost all graph types. This includes options that add and change the look of titles, notes, and such; control the number of ticks on axes; control the content and appearance of the numbers and labels on axes; control legends; add and change the look of annotations; graph over subgroups; change the look of markers and their labels; size graphs and their elements; and more. To complete the graphical journey, Mitchell discusses and demonstrates the 12 styles that unite and control the appearance of the myriad graph objects. These styles are angles, colors, clock positions, compass directions, connecting points, line patterns, line widths, margins, marker sizes, orientations, marker symbols, and text sizes. You won't want to overlook the appendix in this book. There Mitchell first gives a quick overview of the dozens of statistical graph commands that are not strictly the subject of the book. Even so, these commands use the graph command as an engine to draw their graphs; therefore, almost all that Mitchell has discussed applies to them. He also addresses combining graphs-showing you how to create complex and multipart images from previously created graphs. In a crucial section titled "Putting it all together", Mitchell shows us how to do just that. We learn more about overlaying twoway plots, and we learn how to combine data management and graphics to create plots such as bar charts of rates with capped confidence intervals. Mitchell concludes by warning us about mistakes that can be made when typing graph commands and how to correct them. The fourth edition of A Visual Guide to Stata Graphics is a complete guide to Stata's graph command and the associated Graph Editor. Whether you want to tame the Stata graph command, quickly find out how to produce a graphical effect, or learn approaches that can be used to construct custom graphs, this is the book to read.
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATHCADä offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including:
This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
The contributions gathered in this book focus on modern methods for statistical learning and modeling in data analysis and present a series of engaging real-world applications. The book covers numerous research topics, ranging from statistical inference and modeling to clustering and factorial methods, from directional data analysis to time series analysis and small area estimation. The applications reflect new analyses in a variety of fields, including medicine, finance, engineering, marketing and cyber risk. The book gathers selected and peer-reviewed contributions presented at the 12th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2019), held in Cassino, Italy, on September 11-13, 2019. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results. This book, true to CLADAG's goals, is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification.
This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi-Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi-Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi-Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.
R, an Open Source software, has become the "de facto" statistical computing environment. It has an excellent collection of data manipulation and graphics capabilities. It is extensible and comes with a large number of packages that allow statistical analysis at all levels - from simple to advanced - and in numerous fields including Medicine, Genetics, Biology, Environmental Sciences, Geology, Social Sciences and much more. The software is maintained and developed by academicians and professionals and as such, is continuously evolving and up to date. "Statistics and Data with R" presents an accessible guide to data manipulations, statistical analysis and graphics using R. Assuming no previous knowledge of statistics or R, the book includes: A comprehensive introduction to the R language. An integrated approach to importing and preparing data for analysis, exploring and analyzing the data, and presenting results. Over 300 examples, including detailed explanations of the R scripts used throughout. Over 100 moderately large data sets from disciplines ranging from Biology, Ecology and Environmental Science to Medicine, Law, Military and Social Sciences. A parallel discussion of analyses with the normal density, proportions (binomial), counts (Poisson) and bootstrap methods. Two extensive indexes that include references to every R function (and its arguments and packages used in the book and to every introduced concept. An accompanying Wiki website, http: //turtle.gis.umn.eduincludes all the scripts and data used in the book. The website also features a solutions manual, providing answers to all of the excercises presented in the book. Visitors are invited to download/upload data andscripts and share comments, suggestions and questions with other visitors. Students, researchers and practitioners will find this to be both a valuable learning resource in statistics and R and an excellent reference book.
This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.
This book features selected papers presented at the 2nd International Conference on Advanced Computing Technologies and Applications, held at SVKM's Dwarkadas J. Sanghvi College of Engineering, Mumbai, India, from 28 to 29 February 2020. Covering recent advances in next-generation computing, the book focuses on recent developments in intelligent computing, such as linguistic computing, statistical computing, data computing and ambient applications.
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
How to Use SPSS (R) is designed with the novice computer user in mind and for people who have no previous experience using SPSS. Each chapter is divided into short sections that describe the statistic being used, important underlying assumptions, and how to interpret the results and express them in a research report. The book begins with the basics, such as starting SPSS, defining variables, and entering and saving data. It covers all major statistical techniques typically taught in beginning statistics classes, such as descriptive statistics, graphing data, prediction and association, parametric inferential statistics, nonparametric inferential statistics and statistics for test construction. More than 270 screenshots (including sample output) throughout the book show students exactly what to expect as they follow along using SPSS. The book includes a glossary of statistical terms and practice exercises. A complete set of online resources including video tutorials and output files for students, and PowerPoint slides and test bank questions for instructors, make How to Use SPSS (R) the definitive, field-tested resource for learning SPSS. New to this edition: Now in full color with additional screenshots Fully updated to the reflect SPSS version 26 (and prior versions) Changes in nonparametric tests Model View incorporated Data and real output are now available for all Phrasing Results sections - eliminating hypothetical output or hypothetical data
Want to use the power of R sooner rather than later? Don't have time to plow through wordy texts and online manuals? Use this book for quick, simple code to get your projects up and running. It includes code and examples applicable to many disciplines. Written in everyday language with a minimum of complexity, each chapter provides the building blocks you need to fit R's astounding capabilities to your analytics, reporting, and visualization needs. CRAN Recipes recognizes how needless jargon and complexity get in your way. Busy professionals need simple examples and intuitive descriptions; side trips and meandering philosophical discussions are left for other books. Here R scripts are condensed, to the extent possible, to copy-paste-run format. Chapters and examples are structured to purpose rather than particular functions (e.g., "dirty data cleanup" rather than the R package name "janitor"). Everyday language eliminates the need to know functions/packages in advance. What You Will Learn Carry out input/output; visualizations; data munging; manipulations at the group level; and quick data exploration Handle forecasting (multivariate, time series, logistic regression, Facebook's Prophet, and others) Use text analytics; sampling; financial analysis; and advanced pattern matching (regex) Manipulate data using DPLYR: filter, sort, summarize, add new fields to datasets, and apply powerful IF functions Create combinations or subsets of files using joins Write efficient code using pipes to eliminate intermediate steps (MAGRITTR) Work with string/character manipulation of all types (STRINGR) Discover counts, patterns, and how to locate whole words Do wild-card matching, extraction, and invert-match Work with dates using LUBRIDATE Fix dirty data; attractive formatting; bad habits to avoid Who This Book Is For Programmers/data scientists with at least some prior exposure to R.
This book presents the best papers from the 1st International Conference on Mathematical Research for Blockchain Economy (MARBLE) 2019, held in Santorini, Greece. While most blockchain conferences and forums are dedicated to business applications, product development or Initial Coin Offering (ICO) launches, this conference focused on the mathematics behind blockchain to bridge the gap between practice and theory. Every year, thousands of blockchain projects are launched and circulated in the market, and there is a tremendous wealth of blockchain applications, from finance to healthcare, education, media, logistics and more. However, due to theoretical and technical barriers, most of these applications are impractical for use in a real-world business context. The papers in this book reveal the challenges and limitations, such as scalability, latency, privacy and security, and showcase solutions and developments to overcome them.
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
Advanced R helps you understand how R works at a fundamental level. It is designed for R programmers who want to deepen their understanding of the language, and programmers experienced in other languages who want to understand what makes R different and special. This book will teach you the foundations of R; three fundamental programming paradigms (functional, object-oriented, and metaprogramming); and powerful techniques for debugging and optimising your code. By reading this book, you will learn: The difference between an object and its name, and why the distinction is important The important vector data structures, how they fit together, and how you can pull them apart using subsetting The fine details of functions and environments The condition system, which powers messages, warnings, and errors The powerful functional programming paradigm, which can replace many for loops The three most important OO systems: S3, S4, and R6 The tidy eval toolkit for metaprogramming, which allows you to manipulate code and control evaluation Effective debugging techniques that you can deploy, regardless of how your code is run How to find and remove performance bottlenecks The second edition is a comprehensive update: New foundational chapters: "Names and values," "Control flow," and "Conditions" comprehensive coverage of object oriented programming with chapters on S3, S4, R6, and how to choose between them Much deeper coverage of metaprogramming, including the new tidy evaluation framework use of new package like rlang (http://rlang.r-lib.org), which provides a clean interface to low-level operations, and purr (http://purrr.tidyverse.org/) for functional programming Use of color in code chunks and figures Hadley Wickham is Chief Scientist at RStudio, an Adjunct Professor at Stanford University and the University of Auckland, and a member of the R Foundation. He is the lead developer of the tidyverse, a collection of R packages, including ggplot2 and dplyr, designed to support data science. He is also the author of R for Data Science (with Garrett Grolemund), R Packages, and ggplot2: Elegant Graphics for Data Analysis.
This volume presents the latest advances in statistics and data science, including theoretical, methodological and computational developments and practical applications related to classification and clustering, data gathering, exploratory and multivariate data analysis, statistical modeling, and knowledge discovery and seeking. It includes contributions on analyzing and interpreting large, complex and aggregated datasets, and highlights numerous applications in economics, finance, computer science, political science and education. It gathers a selection of peer-reviewed contributions presented at the 16th Conference of the International Federation of Classification Societies (IFCS 2019), which was organized by the Greek Society of Data Analysis and held in Thessaloniki, Greece, on August 26-29, 2019.
A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).
*When R creates copies, and how it affects memory usage and code performance *Everything you could ever want to know about functions *The differences between calling and exiting handlers *How to employ functional programming to solve modular tasks *The motivation, mechanics, usage, and limitations of R's highly pragmatic S3 OO system *The R6 OO system, which is more like OO programming in other languages *The rules that R uses to parse and evaluate expressions *How to use metaprogramming to generate HTML or LaTeX with elegant R code *How to identify and resolve performance bottlenecks |
You may like...
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,404
Discovery Miles 124 040
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, …
Hardcover
R2,644
Discovery Miles 26 440
Portfolio and Investment Analysis with…
John B. Guerard, Ziwei Wang, …
Hardcover
R2,369
Discovery Miles 23 690
Statistical Regression Modeling with R…
Ding-Geng (Din) Chen, Jenny K. Chen
Hardcover
R3,370
Discovery Miles 33 700
SAS Certification Prep Guide…
Joni N Shreve, Donna Dea Holland
Hardcover
R2,922
Discovery Miles 29 220
|