Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Analyzing Health Data in R for SAS Users is aimed at helping health data analysts who use SAS accomplish some of the same tasks in R. It is targeted to public health students and professionals who have a background in biostatistics and SAS software, but are new to R. For professors, it is useful as a textbook for a descriptive or regression modeling class, as it uses a publicly-available dataset for examples, and provides exercises at the end of each chapter. For students and public health professionals, not only is it a gentle introduction to R, but it can serve as a guide to developing the results for a research report using R software. Features: Gives examples in both SAS and R Demonstrates descriptive statistics as well as linear and logistic regression Provides exercise questions and answers at the end of each chapter Uses examples from the publicly available dataset, Behavioral Risk Factor Surveillance System (BRFSS) 2014 data Guides the reader on producing a health analysis that could be published as a research report Gives an example of hypothesis-driven data analysis Provides examples of plots with a color insert
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Master the tools of MATLAB through hands-on examples The mathematical software MATLAB integrates computation, visualization, and programming to produce a powerful tool for a number of different tasks in mathematics. Focusing on the MATLAB toolboxes especially dedicated to science, finance, and engineering, MATLAB with Applications to Engineering, Physics and Finance explains how to perform complex mathematical tasks with relatively simple programs. This versatile book is accessible enough for novices and users with only a fundamental knowledge of MATLAB, yet covers many sophisticated concepts to make it helpful for experienced users as well. The author first introduces the basics of MATLAB, describing simple functions such as differentiation, integration, and plotting. He then addresses advanced topics, including programming, producing executables, publishing results directly from MATLAB programs, and creating graphical user interfaces. The text also presents examples of Simulink that highlight the advantages of using this software package for system modeling and simulation. The applications-dedicated chapters at the end of the book explore the use of MATLAB in digital signal processing, chemical and food engineering, astronomy, optics, financial derivatives, and much more.
Electrical Machines with MATLAB(r) encapsulates the invaluable insight and experience that eminent instructor Turan Gonen has acquired in almost 40 years of teaching. With simple, versatile content that separates it from other texts on electrical machines, this book is an ideal self-study tool for advanced students in electrical and other areas of engineering. In response to the often inadequate, rushed coverage of fundamentals in most basic circuit analysis books and courses, this resource is intelligently designed, easy to read, and packed with in-depth information on crucial concepts. Topics include three-phase circuits, power measurement in AC circuits, magnetic circuits, transformers, and induction, synchronous, and direct-current machines. The book starts by reviewing more basic concepts, with numerous examples to clarify their application. It then explores new "buzzword" topics and developments in the area of electrical machine applications and electric power systems, including:
Using International Systems (IS) units throughout, this cross-disciplinary design guide delves into commonly used vocabulary and symbols associated with electrical machinery. Several new appendices contain tools such as an extensive glossary to explain important terms. Outlining a wide range of information-and the many different ways to apply it-this book is an invaluable, multifunctional resource for students and professors, as well as practicing professionals looking to refresh and update their knowledge.
Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.
Interactive Graphics for Data Analysis: Principles and Examples discusses exploratory data analysis (EDA) and how interactive graphical methods can help gain insights as well as generate new questions and hypotheses from datasets. Fundamentals of Interactive Statistical GraphicsThe first part of the book summarizes principles and methodology, demonstrating how the different graphical representations of variables of a dataset are effectively used in an interactive setting. The authors introduce the most important plots and their interactive controls. They also examine various types of data, relations between variables, and plot ensembles. Case Studies Illustrate the PrinciplesThe second section focuses on nine case studies. Each case study describes the background, lists the main goals of the analysis and the variables in the dataset, shows what further numerical procedures can add to the graphical analysis, and summarizes important findings. Wherever applicable, the authors also provide the numerical analysis for datasets found in Cox and Snell's landmark book. Understand How to Analyze Data through Graphical Means This full-color text shows that interactive graphical methods complement the traditional statistical toolbox to achieve more complete, easier to understand, and easier to interpret analyses.
Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts, such as grid computing and massively parallel supercomputers. The Handbook of Parallel Computing and Statistics systematically applies the principles of parallel computing for solving increasingly complex problems in statistics research. This unique reference weaves together the principles and theoretical models of parallel computing with the design, analysis, and application of algorithms for solving statistical problems. After a brief introduction to parallel computing, the book explores the architecture, programming, and computational aspects of parallel processing. Focus then turns to optimization methods followed by statistical applications. These applications include algorithms for predictive modeling, adaptive design, real-time estimation of higher-order moments and cumulants, data mining, econometrics, and Bayesian computation. Expert contributors summarize recent results and explore new directions in these areas. Its intricate combination of theory and practical applications makes the Handbook of Parallel Computing and Statistics an ideal companion for helping solve the abundance of computation-intensive statistical problems arising in a variety of fields.
Recentyearshaveseentheadventanddevelopmentofmanydevicesabletorecordand storeaneverincreasingamountofinformation. Thefastprogressofthesetechnologies is ubiquitousthroughoutall ?elds of science and applied contexts, ranging from medicine,biologyandlifesciences,toeconomicsandindustry. Thedataprovided bytheseinstrumentshavedifferentforms:2D-3Dimagesgeneratedbydiagnostic medicalscanners,computervisionorsatelliteremotesensing,microarraydataand genesets,integratedclinicalandadministrativedatafrompublichealthdatabases, realtimemonitoringdataofabio-marker,systemcontroldatasets. Allthesedata sharethecommoncharacteristicofbeingcomplexandoftenhighlydimensional. Theanalysisofcomplexandhighlydimensionaldataposesnewchallengesto thestatisticianandrequiresthedevelopmentofnovelmodelsandtechniques,fueling manyfascinatingandfastgrowingresearchareasofmodernstatistics. Anincomplete listincludes for example: functionaldata analysis, that deals with data having a functionalnature,suchascurvesandsurfaces;shapeanalysisofgeometricforms,that relatestoshapematchingandshaperecognition,appliedtocomputationalvisionand medicalimaging;datamining,thatstudiesalgorithmsfortheautomaticextraction ofinformationfromdata,elicitingrulesandpatternsoutofmassivedatasets;risk analysis,fortheevaluationofhealth,environmental,andengineeringrisks;graphical models,thatallowproblemsinvolvinglarge-scalemodelswithmillionsofrandom variableslinkedincomplexwaystobeapproached;reliabilityofcomplexsystems, whoseevaluationrequirestheuseofmanystatisticalandprobabilistictools;optimal designofcomputersimulationstoreplaceexpensiveandtimeconsumingphysical experiments. Thecontributionspublishedinthisvolumearetheresultofaselectionbasedonthe presentations(aboutonehundred)givenattheconference"S. Co. 2009:Complexdata modelingandcomputationallyintensivemethodsforestimationandprediction",held ? atthePolitecnicodiMilano. S. Co. isaforumforthediscussionofnewdevelopments ? September14-16,2009. Thatof2009isitssixthedition,the?rstonebeingheldinVenice in1999. VI Preface andapplicationsofstatisticalmethodsandcomputationaltechniquesforcomplexand highlydimensionaldatasets. Thebookisaddressedtostatisticiansworkingattheforefrontofthestatistical analysisofcomplexandhighlydimensionaldataandoffersawidevarietyofstatistical models,computerintensivemethodsandapplications. Wewishtothankallassociateeditorsandrefereesfortheirvaluablecontributions thatmadethisvolumepossible. MilanandVenice,May2010 PietroMantovan PiercesareSecchi Contents Space-timetextureanalysisinthermalinfraredimagingforclassi?cation ofRaynaud'sPhenomenon GrazianoAretusi,LaraFontanella,LuigiIppolitiandArcangeloMerla...1 Mixed-effectsmodellingofKevlar?brefailuretimesthroughBayesian non-parametrics RaffaeleArgiento,AlessandraGuglielmiandAntonioPievatolo...13 Space?llingandlocallyoptimaldesignsforGaussianUniversalKriging AlessandroBaldiAntogniniandMaroussaZagoraiou...27 Exploitation,integrationandstatisticalanalysisofthePublicHealth DatabaseandSTEMIArchiveintheLombardiaregion PietroBarbieri,Niccolo'Grieco,FrancescaIeva,AnnaMariaPaganoniand PiercesareSecchi...41 Bootstrapalgorithmsforvarianceestimationin PSsampling AlessandroBarbieroandFulviaMecatti...5 7 FastBayesianfunctionaldataanalysisofbasalbodytemperature JamesM. Ciera...71 AparametricMarkovchaintomodelage-andstate-dependentwear processes MassimilianoGiorgio,MaurizioGuidaandGianpaoloPulcini...85 CasestudiesinBayesiancomputationusingINLA SaraMartinoandHav ? ardRue...99 Agraphicalmodelsapproachforcomparinggenesets M. So?aMassa,MonicaChiognaandChiaraRomualdi...115 VIII Contents Predictivedensitiesandpredictionlimitsbasedonpredictivelikelihoods PaoloVidoni...123 Computer-intensiveconditionalinference G. AlastairYoungandThomasJ. DiCiccio...137 MonteCarlosimulationmethodsforreliabilityestimationandfailure prognostics EnricoZio...151 ListofContributors AlessandroBaldiAntognini JamesM. Ciera DepartmentofStatisticalSciences DepartmentofStatisticalSciences UniversityofBologna UniversityofPadova Bologna,Italy Padova,Italy ThomasJ. DiCiccio GrazianoAretusi DepartmentofSocialStatistics DepartmentofQuantitativeMethods CornellUniversity andEconomicTheory Ithaca,USA UniversityG. d'Annunzio Chieti-Pescara,Italy LaraFontanella DepartmentofQuantitativeMethods RaffaeleArgiento andEconomicTheory CNRIMATI UniversityG. d'Annunzio Milan,Italy Chieti-Pescara,Italy MassimilianoGiorgio PietroBarbieri DepartmentofAerospace Uf? cioQualita' andMechanicalEngineering CernuscosulNaviglio,Italy SecondUniversityofNaples Aversa(CE),Italy AlessandroBarbiero DepartmentofEconomics Niccolo'Grieco BusinessandStatistics A. O. NiguardaCa'Granda UniversityofMilan Milan,Italy Milan,Italy MaurizioGuida MonicaChiogna DepartmentofElectrical DepartmentofStatisticalSciences andInformationEngineering UniversityofPadova UniversityofSalerno Padova,Italy Fisciano(SA),Italy X ListofContributors AlessandraGuglielmi AntonioPievatolo DepartmentofMathematics CNRIMATI PolitecnicodiMilano Milan,Italy Milan,Italy GianpaoloPulcini alsoaf?liatedtoCNRIMATI,Milano IstitutoMotori NationalResearchCouncil(CNR) FrancescaIeva Naples,Italy MOX-DepartmentofMathematics PolitecnicodiMilano ChiaraRomualdi Milan,Italy DepartmentofBiology UniversityofPadova LuigiIppoliti Padova,Italy DepartmentofQuantitativeMethods andEconomicTheory H?avardRue UniversityG. d'Annunzio DepartmentofMathematicalSciences Chieti-Pescara,Italy NorwegianUniversityforScience andTechnology SaraMartino Trondheim,Norway DepartmentofMathematicalSciences NorwegianUniversityforScience PiercesareSecchi andTechnology MOX-DepartmentofMathematics Trondheim,Norway PolitecnicodiMilano Milan,Italy M. So?aMassa DepartmentofStatisticalSciences PaoloVidoni UniversityofPadova DepartmentofStatistics Padova,Italy UniversityofUdine Udine,Italy FulviaMecatti DepartmentofStatistics G.
Essential MATLAB for Engineers and Scientists, Eighth Edition provides a concise and balanced overview of MATLAB's functionality, covering both fundamentals and applications. The essentials are illustrated throughout, featuring complete coverage of the software's windows and menus. Program design and algorithm development are presented, along with many examples from a wide range of familiar scientific and engineering areas. This edition has been updated to include the latest MATLAB versions through 2021a. This is an ideal book for a first course on MATLAB, but is also ideal for an engineering problem-solving course using MATLAB.
Thoroughly revised and updated, The Art of Modeling in Science and Engineering with "Mathematica(R)," Second Edition explores the mathematical tools and procedures used in modeling based on the laws of conservation of mass, energy, momentum, and electrical charge. The authors have culled and consolidated the best from the first edition and expanded the range of applied examples to reach a wider audience. The text proceeds, in measured steps, from simple models of real-world problems at the algebraic and ordinary differential equations (ODE) levels to more sophisticated models requiring partial differential equations. The traditional solution methods are supplemented with "Mathematica," which is used throughout the text to arrive at solutions for many of the problems presented. The text is enlivened with a host of illustrations and practice problems drawn from classical and contemporary sources. They range from Thomson's famous experiment to determine e/m and Euler's model for the buckling of a strut to an analysis of the propagation of emissions and the performance of wind turbines. The mathematical tools required are first explained in separate chapters and then carried along throughout the text to solve and analyze the models. Commentaries at the end of each illustration draw attention to the pitfalls to be avoided and, perhaps most important, alert the reader to unexpected results that defy conventional wisdom. These features and more make the book the perfect tool for resolving three common difficulties: the proper choice of model, the absence of precise solutions, and the need to make suitable simplifying assumptions and approximations. The book covers a wide range ofphysical processes and phenomena drawn from various disciplines and clearly illuminates the link between the physical system being modeled and the mathematical expression that results.
Researchers in spatial statistics and image analysis are familiar with Gaussian Markov Random Fields (GMRFs), and they are traditionally among the few who use them. There are, however, a wide range of applications for this methodology, from structural time-series analysis to the analysis of longitudinal and survival data, spatio-temporal models, graphical models, and semi-parametric statistics. With so many applications and with such widespread use in the field of spatial statistics, it is surprising that there remains no comprehensive reference on the subject. Gaussian Markov Random Fields: Theory and Applications provides such a reference, using a unified framework for representing and understanding GMRFs. Various case studies illustrate the use of GMRFs in complex hierarchical models, in which statistical inference is only possible using Markov Chain Monte Carlo (MCMC) techniques. The preeminent experts in the field, the authors emphasize the computational aspects, construct fast and reliable algorithms for MCMC inference, and provide an online C-library for fast and exact simulation. This is an ideal tool for researchers and students in statistics, particularly biostatistics and spatial statistics, as well as quantitative researchers in engineering, epidemiology, image analysis, geography, and ecology, introducing them to this powerful statistical inference method.
How to Use SPSS (R) is designed with the novice computer user in mind and for people who have no previous experience using SPSS. Each chapter is divided into short sections that describe the statistic being used, important underlying assumptions, and how to interpret the results and express them in a research report. The book begins with the basics, such as starting SPSS, defining variables, and entering and saving data. It covers all major statistical techniques typically taught in beginning statistics classes, such as descriptive statistics, graphing data, prediction and association, parametric inferential statistics, nonparametric inferential statistics and statistics for test construction. More than 270 screenshots (including sample output) throughout the book show students exactly what to expect as they follow along using SPSS. The book includes a glossary of statistical terms and practice exercises. A complete set of online resources including video tutorials and output files for students, and PowerPoint slides and test bank questions for instructors, make How to Use SPSS (R) the definitive, field-tested resource for learning SPSS. New to this edition: Now in full color with additional screenshots Fully updated to the reflect SPSS version 26 (and prior versions) Changes in nonparametric tests Model View incorporated Data and real output are now available for all Phrasing Results sections - eliminating hypothetical output or hypothetical data
"Data Analysis of Asymmetric Structures" provides a comprehensive presentation of a variety of models and theories for the analysis of asymmetry and its applications and provides a wealth of new approaches in every section. It meets both the practical and theoretical needs of research professionals across a wide range of disciplines andA considers data analysis in fields such as psychology, sociology, social science, ecology, and marketing. In seven comprehensive chapters this guide details theories, methods, and models for the analysis of asymmetric structures in a variety of disciplines and presents future opportunities and challenges affecting research developments and business applications.
Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography, pattern recognition for satellite images from remote sensing, management of agriculture and forests, assessment of climate change, and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics are covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms, and deep learning, as well as the recent merging of machine learning and physics. End-of-chapter exercises allow readers to develop their problem-solving skills and online data sets allow readers to practise analysis of real data.
There is nothing quite like that feeling you get when you see that look of recognition and enjoyment on your students' faces. Not just the strong ones, but everyone is nodding in agreement during your first explanation of the geometry of directional derivatives.
This third edition of Paul Murrell's classic book on using R for graphics represents a major update, with a complete overhaul in focus and scope. It focuses primarily on the two core graphics packages in R - graphics and grid - and has a new section on integrating graphics. This section includes three new chapters: importing external images in to R; integrating the graphics and grid systems; and advanced SVG graphics. The emphasis in this third edition is on having the ability to produce detailed and customised graphics in a wide variety of formats, on being able to share and reuse those graphics, and on being able to integrate graphics from multiple systems. This book is aimed at all levels of R users. For people who are new to R, this book provides an overview of the graphics facilities, which is useful for understanding what to expect from R's graphics functions and how to modify or add to the output they produce. For intermediate-level R users, this book provides all of the information necessary to perform sophisticated customizations of plots produced in R. For advanced R users, this book contains vital information for producing coherent, reusable, and extensible graphics functions.
The second edition of Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on new developments and on the computational aspects. There are many numerical examples and notes on the R environment, and the updated chapter on the multivariate model contains additional material on visualization of multivariate data in R. A new chapter on robust procedures in measurement error models concentrates mainly on the rank procedures, less sensitive to errors than other procedures. This book will be an invaluable resource for researchers and postgraduate students in statistics and mathematics. Features * Provides a systematic, practical treatment of robust statistical methods * Offers a rigorous treatment of the whole range of robust methods, including the sequential versions of estimators, their moment convergence, and compares their asymptotic and finite-sample behavior * The extended account of multivariate models includes the admissibility, shrinkage effects and unbiasedness of two-sample tests * Illustrates the small sensitivity of the rank procedures in the measurement error model * Emphasizes the computational aspects, supplies many examples and illustrations, and provides the own procedures of the authors in the R software on the book's website
Powerful, flexible, easy to use-small wonder that the use of MAPLEŪ continues to increase, particularly since the latest releases of MAPLE. The built-in nature of its numerical and graphical facilities gives MAPLE a distinct advantage over traditional programming languages, yet to date, no textbook has used that advantage to introduce programming concepts. Moreover, few books based on MAPLE's latest versions even exist.
The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald's test, their relationship with the likelihood ratio test and Karl Pearson's chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson's chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.
The SPSS Survival Manual throws a lifeline to students and researchers grappling with this powerful data analysis software. In her bestselling guide, Julie Pallant takes you through the entire research process, helping you choose the right data analysis technique for your project. This edition has been updated to include up to SPSS version 26. From the formulation of research questions, to the design of the study and analysis of data, to reporting the results, Julie discusses basic and advanced statistical techniques. She outlines each technique clearly, with step-by-step procedures for performing the analysis, a detailed guide to interpreting data output and an example of how to present the results in a report. For both beginners and experienced users in Psychology, Sociology, Health Sciences, Medicine, Education, Business and related disciplines, the SPSS Survival Manual is an essential text. It is illustrated throughout with screen grabs, examples of output and tips, and is also further supported by a website with sample data and guidelines on report writing. This seventh edition is fully revised and updated to accommodate changes to IBM SPSS procedures.
"This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist."- Professor Charles Bouveyron, INRIA Chair in Data Science, Universite Cote d'Azur, Nice, France Julia, an open-source programming language, was created to be as easy to use as languages such as R and Python while also as fast as C and Fortran. An accessible, intuitive, and highly efficient base language with speed that exceeds R and Python, makes Julia a formidable language for data science. Using well known data science methods that will motivate the reader, Data Science with Julia will get readers up to speed on key features of the Julia language and illustrate its facilities for data science and machine learning work. Features: Covers the core components of Julia as well as packages relevant to the input, manipulation and representation of data. Discusses several important topics in data science including supervised and unsupervised learning. Reviews data visualization using the Gadfly package, which was designed to emulate the very popular ggplot2 package in R. Readers will learn how to make many common plots and how to visualize model results. Presents how to optimize Julia code for performance. Will be an ideal source for people who already know R and want to learn how to use Julia (though no previous knowledge of R or any other programming language is required). The advantages of Julia for data science cannot be understated. Besides speed and ease of use, there are already over 1,900 packages available and Julia can interface (either directly or through packages) with libraries written in R, Python, Matlab, C, C++ or Fortran. The book is for senior undergraduates, beginning graduate students, or practicing data scientists who want to learn how to use Julia for data science. "This book is a great way to both start learning data science through the promising Julia language and to become an efficient data scientist." Professor Charles Bouveyron INRIA Chair in Data Science Universite Cote d'Azur, Nice, France
Transfer function form, zpk, state space, modal, and state space modal forms. For someone learning dynamics for the first time or for engineers who use the tools infrequently, the options available for constructing and representing dynamic mechanical models can be daunting. It is important to find a way to put them all in perspective and have them available for quick reference.
There is nothing quite like that feeling you get when you see that look of recognition and enjoyment on your students' faces. Not just the strong ones, but everyone is nodding in agreement during your first explanation of the geometry of directional derivatives. If you have incorporated animated demonstrations into your teaching, you know how effective they can be in eliciting this kind of response. You know the value of giving students vivid moving images to tie to concepts. But learning to make animations generally requires extensive searching through a vast computer algebra system for the pertinent functions. Maple Animation brings together virtually all of the functions and procedures useful in creating sophisticated animations using Maple 7, 8, or 9 and it presents them in a logical, accessible way. The accompanying downloadable resources provide all of the Maple code used in the book, including the code for more than 30 ready-to-use demonstrations. From Newton's method to linear transformations, the complete animations included in this book allow you to use them straight out of the box. Careful explanations of the methods teach you how to implement your own creative ideas. Whether you are a novice or an experienced Maple user, Maple Animation provides the tools and skills to enhance your teaching and your students' enjoyment of the subject through animation.
Data Driven Statistical Methods is designed for use either as a text book at the undergraduate level, as a source book providing material and suggestions for teachers wishing to incorporate some of its features into more general courses, and also as a self-instruction manual for applied statisticians seeking a simple introduction to many important practical concepts that use the 'data driven' rather than the 'model driven' approach. |
You may like...
The Life of Felix Mendelssohn-Bartholdy
Wilhelm Adolf Lampadius
Paperback
R512
Discovery Miles 5 120
Alfred's Basic Piano Library Prep Course…
Willard A Palmer, Morton Manus, …
Staple bound
|