Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language.The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis on the Java Platform is a great choice for those who want to learn how statistical data analysis can be done using popular programming languages, who want to integrate data analysis algorithms in full-scale applications, and deploy such calculations on the web pages or computational servers regardless of their operating system. It is an excellent reference for scientific computations to solve real-world problems using a comprehensive stack of open-source Java libraries included in the DataMelt (DMelt) project and will be appreciated by many data-analysis scientists, engineers and students.
This book is the third edition of a successful textbook for upper-undergraduate and early graduate students, which offers a solid foundation in probability theory and statistics and their application to physical sciences, engineering, biomedical sciences and related disciplines. It provides broad coverage ranging from conventional textbook content of probability theory, random variables, and their statistics, regression, and parameter estimation, to modern methods including Monte-Carlo Markov chains, resampling methods and low-count statistics. In addition to minor corrections and adjusting structure of the content, particular features in this new edition include: Python codes and machine-readable data for all examples, classic experiments, and exercises, which are now more accessible to students and instructors New chapters on low-count statistics including the Poisson-based Cash statistic for regression in the low-count regime, and on contingency tables and diagnostic testing. An additional example of classic experiments based on testing data for SARS-COV-2 to demonstrate practical applications of the described statistical methods. This edition inherits the main pedagogical method of earlier versions-a theory-then-application approach-where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the materials. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data as well as exercises and examples to aid the readers' understanding of the topic.
This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
Modelling Survival Data in Medical Research, Fourth Edition describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring. This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data. Features: Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the author's many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publisher's website Modelling Survival Data in Medical Research, Fourth Edition is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.
Recent achievements in hardware and software developments have enabled the introduction of a revolutionary technology: in-memory data management. This technology supports the flexible and extremely fast analysis of massive amounts of data, such as diagnoses, therapies, and human genome data. This book shares the latest research results of applying in-memory data management to personalized medicine, changing it from computational possibility to clinical reality. The authors provide details on innovative approaches to enabling the processing, combination, and analysis of relevant data in real-time. The book bridges the gap between medical experts, such as physicians, clinicians, and biological researchers, and technology experts, such as software developers, database specialists, and statisticians. Topics covered in this book include - amongst others - modeling of genome data processing and analysis pipelines, high-throughput data processing, exchange of sensitive data and protection of intellectual property. Beyond that, it shares insights on research prototypes for the analysis of patient cohorts, topology analysis of biological pathways, and combined search in structured and unstructured medical data, and outlines completely new processes that have now become possible due to interactive data analyses.
This is a book for people who love mechanics of composite materials and ? MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing the numerical calculations needed in mechanics of c- posite materials. In particular, the steps of the mechanical calculations will be emphasized in this book. The reader will not ?nd ready-made MATLAB programs for use as black boxes. Instead step-by-step solutions of composite material mechanics problems are examined in detail using MATLAB. All the problems in the book assume linear elastic behavior in structural mechanics. The emphasis is not on mass computations or programming, but rather on learning the composite material mechanics computations and understanding of the underlying concepts. The basic aspects of the mechanics of ?ber-reinforced composite materials are covered in this book. This includes lamina analysis in both the local and global coordinate systems, laminate analysis, and failure theories of a lamina.
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
This book features 13 papers presented at the Fifth International Symposium on Recurrence Plots, held August 2013 in Chicago, IL. It examines recent applications and developments in recurrence plots and recurrence quantification analysis (RQA) with special emphasis on biological and cognitive systems and the analysis of coupled systems using cross-recurrence methods. Readers will discover new applications and insights into a range of systems provided by recurrence plot analysis and new theoretical and mathematical developments in recurrence plots. Recurrence plot based analysis is a powerful tool that operates on real-world complex systems that are nonlinear, non-stationary, noisy, of any statistical distribution, free of any particular model type and not particularly long. Quantitative analyses promote the detection of system state changes, synchronized dynamical regimes or classification of system states. The book will be of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis of complex systems in general.
These are the proceedings of the 22nd International Conference on Domain Decomposition Methods, which was held in Lugano, Switzerland. With 172 participants from over 24 countries, this conference continued a long-standing tradition of internationally oriented meetings on Domain Decomposition Methods. The book features a well-balanced mix of established and new topics, such as the manifold theory of Schwarz Methods, Isogeometric Analysis, Discontinuous Galerkin Methods, exploitation of modern HPC architectures and industrial applications. As the conference program reflects, the growing capabilities in terms of theory and available hardware allow increasingly complex non-linear and multi-physics simulations, confirming the tremendous potential and flexibility of the domain decomposition concept.
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.
This book provides an overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. Over 170 figures are included in the book.
For first-year or introductory Engineering courses Best-selling author Delores Etter provides an up-to-date introduction to MATLAB. Using a consistent five-step problem-solving methodology, Etter describes the computational and visualization capabilities of MATLAB and illustrates the problem solving process through a variety of engineering examples and applications. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Customize your Course with ESource: Instructors can adopt this title as is, or use the ESource website to select the chapters they need, in the sequence they want. *Present a Consistent Methodology for Solving Engineering Problems: Chapter 1 introduces a five-step process for solving engineering problems using the computer *Describe the Exceptional Computational and Visualization Capabilities of MATLAB: Students will gain a clear understanding of how to use MATLAB.*Illustrate the Problem-solving Process through a Variety of Engineering Examples and Applications: Numerous examples emphasize the creation of readable and simple solutions to develop and reinforce problem-solving skills. *Keep your Course Current with Discussion of the Latest Technologies: The discussions, screen captures, examples, and problem solutions have been updated to reflect MATLAB Version 8.2, R2013b.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
The aim of stochastic programming is to find optimal decisions
in problems which involve uncertain data. This field is currently
developing rapidly with contributions from many disciplines
including operations research, mathematics, and probability. At the
same time, it is now being applied in a wide variety of subjects
ranging from agriculture to financial planning and from industrial
engineering to computer networks. This textbook provides a first
course in stochastic programming suitable for students with a basic
knowledge of linear programming, elementary analysis, and
probability. The authors aim to present a broad overview of the
main themes and methods of the subject. Its prime goal is to help
students develop an intuition on how to model uncertainty into
mathematical problems, what uncertainty changes bring to the
decision process, and what techniques help to manage uncertainty in
solving the problems. The book is highly illustrated with chapter summaries and many
examples and exercises. Students, researchers and practitioners in
operations research and the optimization area will find it
particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998) "
This new edition includes the latest advances and developments in computational probability involving A Probability Programming Language (APPL). The book examines and presents, in a systematic manner, computational probability methods that encompass data structures and algorithms. The developed techniques address problems that require exact probability calculations, many of which have been considered intractable in the past. The book addresses the plight of the probabilist by providing algorithms to perform calculations associated with random variables. Computational Probability: Algorithms and Applications in the Mathematical Sciences, 2nd Edition begins with an introductory chapter that contains short examples involving the elementary use of APPL. Chapter 2 reviews the Maple data structures and functions necessary to implement APPL. This is followed by a discussion of the development of the data structures and algorithms (Chapters 3-6 for continuous random variables and Chapters 7-9 for discrete random variables) used in APPL. The book concludes with Chapters 10-15 introducing a sampling of various applications in the mathematical sciences. This book should appeal to researchers in the mathematical sciences with an interest in applied probability and instructors using the book for a special topics course in computational probability taught in a mathematics, statistics, operations research, management science, or industrial engineering department.
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/. Dr. Robin Lovelace is a University Academic Fellow at the University of Leeds, where he has taught R for geographic research over many years, with a focus on transport systems. Dr. Jakub Nowosad is an Assistant Professor in the Department of Geoinformation at the Adam Mickiewicz University in Poznan, where his focus is on the analysis of large datasets to understand environmental processes. Dr. Jannes Muenchow is a Postdoctoral Researcher in the GIScience Department at the University of Jena, where he develops and teaches a range of geographic methods, with a focus on ecological modeling, statistical geocomputing, and predictive mapping. All three are active developers and work on a number of R packages, including stplanr, sabre, and RQGIS.
Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas. This book is written for people who want to adopt and use the main tools of machine learning, but aren't necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one's own code. A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use). Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:* classification using standard machinery (naive bayes; nearest neighbor; SVM)* clustering and vector quantization (largely as in PSCS)* PCA (largely as in PSCS)* variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)* linear regression (largely as in PSCS)* generalized linear models including logistic regression* model selection with Lasso, elasticnet* robustness and m-estimators* Markov chains and HMM's (largely as in PSCS)* EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they've been through that, the next one is easy* simple graphical models (in the variational inference section)* classification with neural networks, with a particular emphasis onimage classification* autoencoding with neural networks* structure learning
John Chambers turns his attention to R, the enormously successful open-source system based on the S language. His book guides the reader through programming with R, beginning with simple interactive use and progressing by gradual stages, starting with simple functions. More advanced programming techniques can be added as needed, allowing users to grow into software contributors, benefiting their careers and the community. R packages provide a powerful mechanism for contributions to be organized and communicated. This is the only advanced programming book on R, written by the author of the S language from which R evolved.
For undergraduate and graduate courses in MATLAB or as a reference in courses where MATLAB is used. This text covers all essential aspects of MATLAB presented within an easy- to-follow "learn while doing" tutorial format.
In honor of professor and renowned statistician R. Dennis Cook, this festschrift explores his influential contributions to an array of statistical disciplines ranging from experimental design and population genetics, to statistical diagnostics and all areas of regression-related inference and analysis. Since the early 1990s, Prof. Cook has led the development of dimension reduction methodology in three distinct but related regression contexts: envelopes, sufficient dimension reduction (SDR), and regression graphics. In particular, he has made fundamental and pioneering contributions to SDR, inventing or co-inventing many popular dimension reduction methods, such as sliced average variance estimation, the minimum discrepancy approach, model-free variable selection, and sufficient dimension reduction subspaces. A prolific researcher and mentor, Prof. Cook is known for his ability to identify research problems in statistics that are both challenging and important, as well as his deep appreciation for the applied side of statistics. This collection of Prof. Cook's collaborators, colleagues, friends, and former students reflects the broad array of his contributions to the research and instructional arenas of statistics.
Monte Carlo statistical methods, particularly those based on Markov chains, are now an essential component of the standard set of techniques used by statisticians. This new edition has been revised towards a coherent and flowing coverage of these simulation techniques, with incorporation of the most recent developments in the field. In particular, the introductory coverage of random variable generation has been totally revised, with many concepts being unified through a fundamental theorem of simulation There are five completely new chapters that cover Monte Carlo control, reversible jump, slice sampling, sequential Monte Carlo, and perfect sampling. There is a more in-depth coverage of Gibbs sampling, which is now contained in three consecutive chapters. The development of Gibbs sampling starts with slice sampling and its connection with the fundamental theorem of simulation, and builds up to two-stage Gibbs sampling and its theoretical properties. A third chapter covers the multi-stage Gibbs sampler and its variety of applications. Lastly, chapters from the previous edition have been revised towards easier access, with the examples getting more detailed coverage. This textbook is intended for a second year graduate course, but will also be useful to someone who either wants to apply simulation techniques for the resolution of practical problems or wishes to grasp the fundamental principles behind those methods. The authors do not assume familiarity with Monte Carlo techniques (such as random variable generation), with computer programming, or with any Markov chain theory (the necessary concepts are developed in Chapter 6). A solutions manual, which coversapproximately 40% of the problems, is available for instructors who require the book for a course. Christian P. Robert is Professor of Statistics in the Applied Mathematics Department at UniversitA(c) Paris Dauphine, France. He is also Head of the Statistics Laboratory at the Center for Research in Economics and Statistics (CREST) of the National Institute for Statistics and Economic Studies (INSEE) in Paris, and Adjunct Professor at Ecole Polytechnique. He has written three other books, including The Bayesian Choice, Second Edition, Springer 2001. He also edited Discretization and MCMC Convergence Assessment, Springer 1998. He has served as associate editor for the Annals of Statistics and the Journal of the American Statistical Association. He is a fellow of the Institute of Mathematical Statistics, and a winner of the Young Statistician Award of the SocietiA(c) de Statistique de Paris in 1995. George Casella is Distinguished Professor and Chair, Department of Statistics, University of Florida. He has served as the Theory and Methods Editor of the Journal of the American Statistical Association and Executive Editor of Statistical Science. He has authored three other textbooks: Statistical Inference, Second Edition, 2001, with Roger L. Berger; Theory of Point Estimation, 1998, with Erich Lehmann; and Variance Components, 1992, with Shayle R. Searle and Charles E. McCulloch. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association, and an elected fellow of the International Statistical Institute. |
You may like...
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, …
Hardcover
R2,644
Discovery Miles 26 440
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,613
Discovery Miles 16 130
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,608
Discovery Miles 16 080
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R12,404
Discovery Miles 124 040
|