![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer software packages > Other software packages > Mathematical & statistical software
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
Become a stats superstar by using Excel to reveal the powerful secrets of statistics. Microsoft Excel offers numerous possibilities for statistical analysis―and you don’t have to be a math wizard to unlock them. In Statistical Analysis with Excel For Dummies, fully updated for the 2021 version of Excel, you’ll hit the ground running with straightforward techniques and practical guidance to unlock the power of statistics in Excel. Bypass unnecessary jargon and skip right to mastering formulas, functions, charts, probabilities, distributions, and correlations. Written for professionals and students without a background in statistics or math, you’ll learn to create, interpret, and translate statistics―and have fun doing it! In this book you’ll find out how to:
For anyone who’s ever wanted to unleash the full potential of statistical analysis in Excel―and impress your colleagues or classmates along the way―Statistical Analysis with Excel For Dummies walks you through the foundational concepts of analyzing statistics and the step-by-step methods you use to apply them.
Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. The authors have included a CD-ROM that contains over 130 annotated Mathematica files. These files may be used to solve and explore the text's 400 problems. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text. Additional features: * User-friendly, accessible presentation integrating theory, experiments, and the provided Mathematica notebooks; as the concepts of nonlinear science are developed, readers are gently introduced to Mathematica as an auxiliary tool * CD-ROM includes a wide variety of illustrative nonlinear examples solved with Mathematica--command structures introduced on a need-to-know basis * Notebooks designed to make use of Mathematica's sound capability * Mathematica notebook using the EulerEquation command incorporated into the text This work is an excellent text for undergraduate and graduate students as well as a useful resource for working scientists. Reviewer comments on the Maple edition of NONLINEAR PHYSICS: "An...excellent book...the authors have been able to cover an extraordinary range of topics and hopefully excite a wide audience to investigate nonlinear phenomena...accessible to advanced undergraduates and yet challenging enough for graduate students and workingscientists.... The reader is guided through it all with sound advice and humor.... I hope that many will adopt the text." -American Journal of Physics "Its organization of subject matter, clarity of writing, and smooth integration of analytic and computational techniques put it among the very best...Richard Enns and George McGuire have written an excellent text for introductory nonlinear physics." -Computers in Physics,.".correctly balances a good treatment of nonlinear, but also nonchaotic, behavior of systems with some of the exciting findings about chaotic dynamics...one of the book's strength is the diverse selection of examples from mechanical, chemical, electronic, fluid and many other systems .... Another strength of the book is the diversity of approaches that the student is encouraged to take...the authors have chosen well, and the trio of text, ...software, and lab manual gives the newcomer to nonlinear physics quite an effective set of tools.... Basic ideas are explained clearly and illustrated with many examples." -Physics Today,.". the care that the authors have taken to ensure that their text is as comprehensive, versatile, interactive, and student-friendly as possible place this book far above the average." -Scientific Computing World
Soft computing techniques are innovative tools that use nature-inspired algorithms to run predictive analysis of industries from business to software measurement. These tools have gained momentum in recent years for their practicality and flexibility. The Handbook of Research on Fuzzy and Rough Set Theory in Organizational Decision Making collects both empirical and applied research in the field of fuzzy set theory, and bridges the gap between the application of soft computational approaches and the organizational decision making process. This publication is a pivotal reference for business professionals, IT specialists, software engineers, and advanced students of business and information technology.
This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.
R is rapidly becoming the standard software for statistical analyses, graphical presentation of data, and programming in the natural, physical, social, and engineering sciences. Getting Started with R is now the go-to introductory guide for biologists wanting to learn how to use R in their research. It teaches readers how to import, explore, graph, and analyse data, while keeping them focused on their ultimate goals: clearly communicating their data in oral presentations, posters, papers, and reports. It provides a consistent workflow for using R that is simple, efficient, reliable, and reproducible. This second edition has been updated and expanded while retaining the concise and engaging nature of its predecessor, offering an accessible and fun introduction to the packages dplyr and ggplot2 for data manipulation and graphing. It expands the set of basic statistics considered in the first edition to include new examples of a simple regression, a one-way and a two-way ANOVA. Finally, it introduces a new chapter on the generalised linear model. Getting Started with R is suitable for undergraduates, graduate students, professional researchers, and practitioners in the biological sciences.
This proceedings volume gathers selected, peer-reviewed papers presented at the 41st International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics (QP41) that was virtually held at the United Arab Emirates University (UAEU) in Al Ain, Abu Dhabi, from March 28th to April 1st, 2021. The works cover recent developments in quantum probability and infinite dimensional analysis, with a special focus on applications to mathematical physics and quantum information theory. Covered topics include white noise theory, quantum field theory, quantum Markov processes, free probability, interacting Fock spaces, and more. By emphasizing the interconnection and interdependence of such research topics and their real-life applications, this reputed conference has set itself as a distinguished forum to communicate and discuss new findings in truly relevant aspects of theoretical and applied mathematics, notably in the field of mathematical physics, as well as an event of choice for the promotion of mathematical applications that address the most relevant problems found in industry. That makes this volume a suitable reading not only for researchers and graduate students with an interest in the field but for practitioners as well.
Now in its second edition, this textbook provides an introduction to Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. For this new edition, the introductory chapters on Python, data input and visualization have been reworked and updated. The chapter on experimental design has been expanded, and programs for the determination of confidence intervals commonly used in quality control have been introduced. The book also features a new chapter on finding patterns in data, including time series. A new appendix describes useful programming tools, such as testing tools, code repositories, and GUIs. The provided working code for Python solutions, together with easy-to-follow examples, will reinforce the reader's immediate understanding of the topic. Accompanying data sets and Python programs are also available online. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis. With examples drawn mainly from the life and medical sciences, this book is intended primarily for masters and PhD students. As it provides the required statistics background, the book can also be used by anyone who wants to perform a statistical data analysis.
This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.
This book includes a wide selection of the papers presented at the 48th Scientific Meeting of the Italian Statistical Society (SIS2016), held in Salerno on 8-10 June 2016. Covering a wide variety of topics ranging from modern data sources and survey design issues to measuring sustainable development, it provides a comprehensive overview of the current Italian scientific research in the fields of open data and big data in public administration and official statistics, survey sampling, ordinal and symbolic data, statistical models and methods for network data, time series forecasting, spatial analysis, environmental statistics, economic and financial data analysis, statistics in the education system, and sustainable development. Intended for researchers interested in theoretical and empirical issues, this volume provides interesting starting points for further research.
This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
This book discusses quantum theory as the theory of random (Brownian) motion of small particles (electrons etc.) under external forces. Implying that the Schroedinger equation is a complex-valued evolution equation and the Schroedinger function is a complex-valued evolution function, important applications are given. Readers will learn about new mathematical methods (theory of stochastic processes) in solving problems of quantum phenomena. Readers will also learn how to handle stochastic processes in analyzing physical phenomena.
This book is the third edition of a successful textbook for upper-undergraduate and early graduate students, which offers a solid foundation in probability theory and statistics and their application to physical sciences, engineering, biomedical sciences and related disciplines. It provides broad coverage ranging from conventional textbook content of probability theory, random variables, and their statistics, regression, and parameter estimation, to modern methods including Monte-Carlo Markov chains, resampling methods and low-count statistics. In addition to minor corrections and adjusting structure of the content, particular features in this new edition include: Python codes and machine-readable data for all examples, classic experiments, and exercises, which are now more accessible to students and instructors New chapters on low-count statistics including the Poisson-based Cash statistic for regression in the low-count regime, and on contingency tables and diagnostic testing. An additional example of classic experiments based on testing data for SARS-COV-2 to demonstrate practical applications of the described statistical methods. This edition inherits the main pedagogical method of earlier versions-a theory-then-application approach-where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and practical application of the materials. Basic calculus is used in some of the derivations, and no previous background in probability and statistics is required. The book includes many numerical tables of data as well as exercises and examples to aid the readers' understanding of the topic.
This "hands-on" book is for people who are interested in immediately putting Maple to work. The reader is provided with a compact, fast and surveyable guide that introduces them to the extensive capabilities of the software. The book is sufficient for standard use of Maple and will provide techniques for extending Maple for more specialized work. The author discusses the reliability of results systematically and presents ways of testing questionable results. The book allows a reader to become a user almost immediately and helps him/her to grow gradually to a broader and more proficient use. As a consequence, some subjects are dealt with in an introductory way early in the book, with references to a more detailed discussion later on.
Studies of evolution at the molecular level have experienced phenomenal growth in the last few decades, due to rapid accumulation of genetic sequence data, improved computer hardware and software, and the development of sophisticated analytical methods. The flood of genomic data has generated an acute need for powerful statistical methods and efficient computational algorithms to enable their effective analysis and interpretation. Molecular Evolution: a statistical approach presents and explains modern statistical methods and computational algorithms for the comparative analysis of genetic sequence data in the fields of molecular evolution, molecular phylogenetics, statistical phylogeography, and comparative genomics. Written by an expert in the field, the book emphasizes conceptual understanding rather than mathematical proofs. The text is enlivened with numerous examples of real data analysis and numerical calculations to illustrate the theory, in addition to the working problems at the end of each chapter. The coverage of maximum likelihood and Bayesian methods are in particular up-to-date, comprehensive, and authoritative. This advanced textbook is aimed at graduate level students and professional researchers (both empiricists and theoreticians) in the fields of bioinformatics and computational biology, statistical genomics, evolutionary biology, molecular systematics, and population genetics. It will also be of relevance and use to a wider audience of applied statisticians, mathematicians, and computer scientists working in computational biology.
This book chronicles a 10-year introduction of blended learning into the delivery at a leading technological university, with a longstanding tradition of technology-enabled teaching and learning, and state-of-the-art infrastructure. Hence, both teachers and students were familiar with the idea of online courses. Despite this, the longitudinal experiment did not proceed as expected. Though few technical problems, it required behavioural changes from teachers and learners, thus unearthing a host of socio-technical issues, challenges, and conundrums. With the undercurrent of design ideals such as "tech for good", any industrial sector must examine whether digital platforms are credible substitutes or at best complementary. In this era of Industry 4.0, higher education, like any other industry, should not be about the creative destruction of what we value in universities, but their digital transformation. The book concludes with an agenda for large, repeatable Randomised Controlled Trials (RCTs) to validate digital platforms that could fulfil the aspirations of the key stakeholder groups - students, faculty, and regulators as well as delving into the role of Massive Open Online Courses (MOOCs) as surrogates for "fees-free" higher education and whether the design of such a HiEd 4.0 platform is even a credible proposition. Specifically, the book examines the data-driven evidence within a design-based research methodology to present outcomes of two alternative instructional designs evaluated - traditional lecturing and blended learning. Based on the research findings and statistical analysis, it concludes that the inexorable shift to online delivery of education must be guided by informed educational management and innovation.
This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.
The book "Analysis and Design of Control Systems using MATLAB", is designed as a supplement to an introductory course in feedback control systems for undergraduate or graduate engineering students of all disciplines. Feedback control systems engineering is a multidisciplinary subject and presents a control engineering methodology based on mathematical fundamentals and stresses physical system modeling.This book includes the coverage of classical methods of control systems engineering: introduction to control systems, matrix analysis, Laplace transforms, mathematical modeling of dynamic systems, control system representation, performance and stability of feedback systems, analysis and design of feedback control systems, state space analysis and design, and MATLAB basics and MATLAB tutorial. The numerous worked examples offer detailed explanations, and guide the students through each set of problems to enable them to save a great deal of time and effort in arriving at an understanding of problems in this subject. Extensive references to guide the students to further sources of information on control systems and MATLAB is provided. In addition to students, practising engineers will also find this book immensely useful.
This book presents theoretical modeling and numerical simulations applied to drive several applications towards Industrial Revolution 4.0 (IR 4.0). The topics discussed range from theoretical parts to extensive simulations involving many efficient algorithms as well as various statistical techniques. This book is suitable for postgraduate students, researchers as well as other scientists who are working in mathematics, statistics and numerical modeling and simulation.
This book offers a systematic and rigorous treatment of continuous-time Markov decision processes, covering both theory and possible applications to queueing systems, epidemiology, finance, and other fields. Unlike most books on the subject, much attention is paid to problems with functional constraints and the realizability of strategies. Three major methods of investigations are presented, based on dynamic programming, linear programming, and reduction to discrete-time problems. Although the main focus is on models with total (discounted or undiscounted) cost criteria, models with average cost criteria and with impulsive controls are also discussed in depth. The book is self-contained. A separate chapter is devoted to Markov pure jump processes and the appendices collect the requisite background on real analysis and applied probability. All the statements in the main text are proved in detail. Researchers and graduate students in applied probability, operational research, statistics and engineering will find this monograph interesting, useful and valuable.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution. |
You may like...
Modeling and Simulation with Compose and…
Stephen L. Campbell, Ramine Nikoukhah
Hardcover
R3,180
Discovery Miles 31 800
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,530
Discovery Miles 15 300
SAS Text Analytics for Business…
Teresa Jade, Biljana Belamaric-Wilsey, …
Hardcover
R2,569
Discovery Miles 25 690
An Introduction to Creating Standardized…
Todd Case, Yuting Tian
Hardcover
R1,501
Discovery Miles 15 010
Mathematical Modeling for Smart…
Debabrata Samanta, Debabrata Singh
Hardcover
R11,427
Discovery Miles 114 270
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
|